Columbia University, New York, New York, United States.
J Neurophysiol. 2024 May 1;131(5):825-831. doi: 10.1152/jn.00404.2023. Epub 2024 Mar 27.
This article evaluates the ethical implications of utilizing artificial intelligence (AI) algorithms in neurological diagnostic examinations. Applications of AI technology have been utilized to aid in the determination of pharmacological dosages of gadolinium for brain lesion detection, localization of seizure foci, and the characterization of large vessel occlusion in ischemic stroke patients. Multiple subtypes of AI/machine learning (ML) algorithms are analyzed, as AI-assisted neurology utilizes supervised, unsupervised, artificial neural network (ANN), and deep neural network (DNN) learning models. As ANN and DNN analyses can be applied to data with an unknown clinical diagnosis, these algorithms are evaluated according to Bayesian statistical analyses. Bayesian neural network analyses are incorporated, as these algorithms indicate that the predictive accuracy and model performance are dependent upon accurate configurations of the model's hyperparameters and neural inputs. Thus, mathematical evaluations of AI algorithms are comprehensively explored to examine their clinical utility, as underperformance of AI/ML models may have deleterious consequences that affect patient outcomes due to misdiagnosis and false-negative test results.
本文评估了在神经学诊断检查中使用人工智能 (AI) 算法的伦理含义。AI 技术的应用已被用于辅助确定脑病变检测、癫痫灶定位和缺血性脑卒中患者大血管闭塞的钆类药物的药理学剂量。分析了多种 AI/机器学习 (ML) 算法,因为 AI 辅助神经病学利用了监督、无监督、人工神经网络 (ANN) 和深度神经网络 (DNN) 学习模型。由于 ANN 和 DNN 分析可应用于具有未知临床诊断的数据分析,因此根据贝叶斯统计分析对这些算法进行了评估。还纳入了贝叶斯神经网络分析,因为这些算法表明预测准确性和模型性能取决于模型超参数和神经输入的准确配置。因此,全面探讨了 AI 算法的数学评估,以检验其临床实用性,因为 AI/ML 模型的性能不佳可能会因误诊和假阴性测试结果而对患者的结果产生有害影响。