Suppr超能文献

基于人工智能的机器学习模型用于预测机器人辅助根治性前列腺切除术后尿失禁和勃起功能恢复的开发与评估:来自前列腺癌转诊中心的见解

Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center.

作者信息

Saikali S, Reddy S, Gokaraju M, Goldsztein N, Dyer A, Gamal A, Jaber A, Moschovas M, Rogers T, Vangala A, Briscoe J, Toleti C, Patel P, Patel V

机构信息

AdventHealth Global Robotics Institute, FL, USA.

AdventHealth Global Robotics Institute, FL, USA.

出版信息

Comput Methods Programs Biomed. 2025 Feb;259:108522. doi: 10.1016/j.cmpb.2024.108522. Epub 2024 Nov 20.

Abstract

INTRODUCTION

Prostate cancer remains a significant health concern, with radical prostatectomy being a common treatment approach. However, predicting postoperative functional outcomes, particularly urinary continence and erectile function, poses challenges. Emerging artificial intelligence (AI) technologies offer promise in predictive modeling. This study aimed to develop and validate AI-based models to predict continence and potency following nerve-sparing robotic radical prostatectomy (RARP).

METHODS

A cohort of 8,524 patients undergoing RARP was analyzed. Preoperative variables were collected, and two separate machine-learning Artificial Neural Network (ANN) models were trained to predict continence and potency at 12 months post- surgery. Model performance was assessed using area under the curve (AUC) values, with comparisons made to other machine learning algorithms. Feature importance analysis was conducted to identify key predictors.

RESULTS

The ANN models demonstrated AUCs of 0.74 for potency and 0.68 for continence prediction, outperforming other algorithms. Feature importance analysis identified variables such as age, comorbidities, and preoperative scores as significant predictors for both outcomes.

CONCLUSION

AI-based models show potential in predicting postoperative functional outcomes following RARP. Continued efforts in optimizing models and exploring additional factors are needed to improve predictive accuracy and clinical applicability. Multi-center studies and larger datasets will further contribute to enhancing the value of AI in clinical decision-making for prostate cancer treatment.

摘要

引言

前列腺癌仍然是一个重大的健康问题,根治性前列腺切除术是一种常见的治疗方法。然而,预测术后功能结果,尤其是尿失禁和勃起功能,存在挑战。新兴的人工智能(AI)技术在预测建模方面展现出前景。本研究旨在开发并验证基于AI的模型,以预测保留神经的机器人根治性前列腺切除术(RARP)后的尿失禁和性功能。

方法

分析了一组8524例接受RARP的患者。收集术前变量,并训练两个独立的机器学习人工神经网络(ANN)模型,以预测术后12个月的尿失禁和性功能。使用曲线下面积(AUC)值评估模型性能,并与其他机器学习算法进行比较。进行特征重要性分析以确定关键预测因素。

结果

ANN模型在性功能预测方面的AUC为0.74,在尿失禁预测方面的AUC为0.68,优于其他算法。特征重要性分析确定年龄、合并症和术前评分等变量是这两种结果的重要预测因素。

结论

基于AI的模型在预测RARP术后功能结果方面显示出潜力。需要继续努力优化模型并探索其他因素,以提高预测准确性和临床适用性。多中心研究和更大的数据集将进一步有助于提高AI在前列腺癌治疗临床决策中的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验