Suppr超能文献

需要 RND 泵通过镁离子外排来诱导 中胆盐水解酶生物膜的形成。

Bile-induced biofilm formation in requires magnesium efflux by an RND pump.

机构信息

Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France.

Pediatric Emergency, AP-HP, Necker-Enfants-Malades University Hospital, Paris, France.

出版信息

mBio. 2024 May 8;15(5):e0348823. doi: 10.1128/mbio.03488-23. Epub 2024 Mar 27.

Abstract

is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that biofilm formation is promoted by the presence of bile. This process also requires a extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (), B (), and C ()], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCE is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.

摘要

是人类肠道微生物群的杰出成员,有助于营养物质交换、肠道功能和宿主免疫系统的成熟。这种专性厌氧菌共生体可以采用生物膜生活方式,最近的研究表明,生物膜的形成是由胆汁的存在所促进的。这个过程还需要一种细胞外 DNA 酶,但这种酶不受胆汁的调节。在这里,我们发现胆汁诱导了几种抗性-结节-分裂(RND)外排泵的表达,并且用一种全局竞争外排抑制剂抑制它们的活性会损害胆汁依赖性生物膜的形成。然后我们发现,在胆汁诱导的 RND 外排泵中,只有三联体 BT3337-BT3338-BT3339 泵(重新命名为 BipABC[代表胆汁诱导泵 A()、B()和 C()])是生物膜形成所必需的。我们证明 BipABC 参与了镁向生物膜细胞外基质的外排,导致细胞外 DNA 浓度降低。生物膜基质中镁的释放也会影响生物膜结构,可能通过改变基质中的静电斥力,减少细菌之间的距离,并使细菌更紧密地相互作用,形成更密集的生物膜。因此,我们的研究确定了响应胆汁盐的生物膜形成的新分子决定因素,并提供了对肠道化学信号如何调节主要肠道共生体生物膜形成的更好理解。

重要的是,是人类肠道微生物群的杰出成员,能够降解膳食和宿主多糖,共同促进营养物质交换、肠道功能和宿主免疫系统的成熟。这种专性厌氧菌共生体可以采用生物膜群落生活方式,为免受环境因素的影响提供保护,而这些环境因素反过来又可以保护宿主免受菌群失调和与菌群失调相关的疾病的影响。最近的研究表明,暴露于肠道胆汁会促进生物膜的形成。在这里,我们揭示了一种特定的细胞膜外排泵在胆汁的作用下被诱导,导致镁离子的释放,这可能会降低生物膜基质成分之间的静电斥力。这导致细菌之间的距离减小,并增强了生物膜的结构。因此,我们的研究提供了更好的理解,即胆汁如何促进主要肠道共生体的生物膜形成,这可能促进了微生物对压力和菌群失调事件的恢复力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5173/11078008/4971c9ac5366/mbio.03488-23.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验