文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

来自腐蚀微生物群落的电活性生态系统见解为肠道微生物群落调节提供了信息。

Electroactive ecosystem insights from corrosion microbiomes inform gut microbiome modulation.

作者信息

Jones Liam M, El Aidy Sahar

机构信息

Department of Microbiome Engineering, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Amsterdam, The Netherlands.

Amsterdam Microbiome Expert Centre, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Amsterdam, The Netherlands.

出版信息

ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf112.


DOI:10.1093/ismejo/wraf112
PMID:40448586
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12203069/
Abstract

Electroactive microorganisms influence environmental and host-associated ecosystems through their ability to mediate extracellular electron transfer. This review explores parallels between electroactive microorganisms (EAM)-driven microbiologically influenced corrosion systems and the human gut microbiome. In corrosion, EAMs contribute to biofilm formation, redox cycling, and material degradation through mechanisms such as direct electron transfer and syntrophic interactions. Similarly, gut-associated EAMs regulate redox balance, drive short-chain fatty acid production, and shape host-microbe interactions. Despite differing contexts, both systems share traits like anoxic niches, biofilm formation, and metabolic adaptability. Insights from well-characterized corrosion microbiomes offer valuable frameworks to understand microbial resilience, electron transfer strategies, and interspecies cooperation in the gut. Bridging knowledge between these systems can inform microbiome engineering approaches aimed at promoting gut health, highlighting the need for further functional metagenomics and exploration of archaeal contributions to biofilm stability and redox modulation.

摘要

电活性微生物通过介导细胞外电子转移的能力影响环境和宿主相关生态系统。本综述探讨了电活性微生物(EAM)驱动的微生物影响腐蚀系统与人类肠道微生物群之间的相似之处。在腐蚀过程中,电活性微生物通过直接电子转移和互营相互作用等机制促进生物膜形成、氧化还原循环和材料降解。同样,肠道相关的电活性微生物调节氧化还原平衡,驱动短链脂肪酸的产生,并塑造宿主与微生物的相互作用。尽管环境不同,但这两个系统都具有缺氧微环境、生物膜形成和代谢适应性等特征。对特征明确的腐蚀微生物群的深入了解为理解肠道中的微生物恢复力、电子转移策略和种间合作提供了有价值的框架。将这些系统之间的知识联系起来可以为旨在促进肠道健康的微生物群工程方法提供信息,突出了进一步开展功能宏基因组学研究以及探索古菌对生物膜稳定性和氧化还原调节作用的必要性。

相似文献

[1]
Electroactive ecosystem insights from corrosion microbiomes inform gut microbiome modulation.

ISME J. 2025-1-2

[2]
Toward simulating offshore oilfield conditions: insights into microbiologically influenced corrosion from a dual anaerobic biofilm reactor.

Appl Environ Microbiol. 2025-6-18

[3]
Proteomic and -glycomic comparison of synthetic and bovine whey proteins and their effect on human gut microbiomes .

Microbiol Spectr. 2025-6-26

[4]
Vitamin biosynthesis in the gut: interplay between mammalian host and its resident microbiota.

Microbiol Mol Biol Rev. 2025-6-25

[5]
Ecological mechanisms of microbial assembly in clonal plant : from soil to endosphere.

Appl Environ Microbiol. 2025-6-18

[6]
Exploring the gut microbiome's influence on cancer-associated anemia: Mechanisms, clinical challenges, and innovative therapies.

World J Gastrointest Pharmacol Ther. 2025-6-5

[7]
Accreditation through the eyes of nurse managers: an infinite staircase or a phenomenon that evaporates like water.

J Health Organ Manag. 2025-6-30

[8]
Panax notoginseng-microbiota interactions: From plant cultivation to medicinal application.

Phytomedicine. 2023-10

[9]
Impact of yeast extract on bacterial metabolism and nickel microbiologically influenced corrosion: Insights into medium optimization and biofilm electron transfer mechanism.

Bioelectrochemistry. 2025-12

[10]
Exercise, the Gut Microbiome and Gastrointestinal Diseases: Therapeutic Impact and Molecular Mechanisms.

Gastroenterology. 2025-2-17

本文引用的文献

[1]
Role of sortase-assembled Ebp pili in adhesion to iron oxides and its impact on extracellular electron transfer.

Microbiol Spectr. 2025-3-4

[2]
Dual anaerobic reactor model to study biofilm and microbiologically influenced corrosion interactions on carbon steel.

Npj Mater Degrad. 2024

[3]
Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential.

Nat Rev Microbiol. 2025-3

[4]
as a model microbe for the study of corrosion under sulfate-reducing conditions.

mLife. 2022-3-24

[5]
Effects of intestinal Desulfovibrio bacteria on host health and its potential regulatory strategies: A review.

Microbiol Res. 2024-7

[6]
Bile-induced biofilm formation in requires magnesium efflux by an RND pump.

mBio. 2024-5-8

[7]
The role of gut microbiota in intestinal disease: from an oxidative stress perspective.

Front Microbiol. 2024-2-14

[8]
What happens to Bifidobacterium adolescentis and Bifidobacterium longum ssp. longum in an experimental environment with eukaryotic cells?

BMC Microbiol. 2024-2-19

[9]
Electrogenic sulfur oxidation mediated by cable bacteria and its ecological effects.

Environ Sci Ecotechnol. 2023-12-19

[10]
Microbially Influenced Corrosion of Steel in Marine Environments: A Review from Mechanisms to Prevention.

Microorganisms. 2023-9-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索