Suppr超能文献

基于黏菌算法多策略优化的微电网优化调度研究

Research on Microgrid Optimal Dispatching Based on a Multi-Strategy Optimization of Slime Mould Algorithm.

作者信息

Zhang Yi, Zhou Yangkun

机构信息

College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130000, China.

出版信息

Biomimetics (Basel). 2024 Feb 23;9(3):138. doi: 10.3390/biomimetics9030138.

Abstract

In order to cope with the problems of energy shortage and environmental pollution, carbon emissions need to be reduced and so the structure of the power grid is constantly being optimized. Traditional centralized power networks are not as capable of controlling and distributing non-renewable energy as distributed power grids. Therefore, the optimal dispatch of microgrids faces increasing challenges. This paper proposes a multi-strategy fusion slime mould algorithm (MFSMA) to tackle the microgrid optimal dispatching problem. Traditional swarm intelligence algorithms suffer from slow convergence, low efficiency, and the risk of falling into local optima. The MFSMA employs reverse learning to enlarge the search space and avoid local optima to overcome these challenges. Furthermore, adaptive parameters ensure a thorough search during the algorithm iterations. The focus is on exploring the solution space in the early stages of the algorithm, while convergence is accelerated during the later stages to ensure efficiency and accuracy. The salp swarm algorithm's search mode is also incorporated to expedite convergence. MFSMA and other algorithms are compared on the benchmark functions, and the test showed that the effect of MFSMA is better. Simulation results demonstrate the superior performance of the MFSMA for function optimization, particularly in solving the 24 h microgrid optimal scheduling problem. This problem considers multiple energy sources such as wind turbines, photovoltaics, and energy storage. A microgrid model based on the MFSMA is established in this paper. Simulation of the proposed algorithm reveals its ability to enhance energy utilization efficiency, reduce total network costs, and minimize environmental pollution. The contributions of this paper are as follows: (1) A comprehensive microgrid dispatch model is proposed. (2) Environmental costs, operation and maintenance costs are taken into consideration. (3) Two modes of grid-tied operation and island operation are considered. (4) This paper uses a multi-strategy optimized slime mould algorithm to optimize scheduling, and the algorithm has excellent results.

摘要

为应对能源短缺和环境污染问题,需要减少碳排放,因此电网结构在不断优化。传统的集中式电网在控制和分配不可再生能源方面不如分布式电网。因此,微电网的优化调度面临着越来越大的挑战。本文提出一种多策略融合黏菌算法(MFSMA)来解决微电网优化调度问题。传统的群体智能算法存在收敛速度慢、效率低以及陷入局部最优的风险。MFSMA采用反向学习来扩大搜索空间并避免局部最优,以克服这些挑战。此外,自适应参数确保在算法迭代过程中进行全面搜索。重点是在算法的早期阶段探索解空间,而在后期阶段加速收敛以确保效率和准确性。还引入了樽海鞘群算法的搜索模式以加快收敛。在基准函数上对MFSMA和其他算法进行了比较,测试表明MFSMA的效果更好。仿真结果证明了MFSMA在函数优化方面的优越性能,特别是在解决24小时微电网最优调度问题方面。该问题考虑了风力涡轮机、光伏和储能等多种能源。本文建立了基于MFSMA的微电网模型。对所提算法的仿真揭示了其提高能源利用效率、降低总网络成本以及最小化环境污染的能力。本文的贡献如下:(1)提出了一个综合的微电网调度模型。(2)考虑了环境成本、运行和维护成本。(3)考虑了并网运行和孤岛运行两种模式。(4)本文使用多策略优化的黏菌算法进行优化调度,且该算法具有优异的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/368d/10968051/24fbf395aaef/biomimetics-09-00138-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验