Mathur Akhilesh, Kumari Ruchi, Meena V P, Singh V P, Azar Ahmad Taher, Hameed Ibrahim A
Department of Electrical Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India.
Department of Electrical and Electronics Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru, India.
Sci Rep. 2024 May 11;14(1):10806. doi: 10.1038/s41598-024-58767-4.
The integration of renewable energy resources into the smart grids improves the system resilience, provide sustainable demand-generation balance, and produces clean electricity with minimal leakage currents. However, the renewable sources are intermittent in nature. Therefore, it is necessary to develop scheduling strategy to optimise hybrid PV-wind-controllable distributed generator based Microgrids in grid-connected and stand-alone modes of operation. In this manuscript, a priority-based cost optimization function is developed to show the relative significance of one cost component over another for the optimal operation of the Microgrid. The uncertainties associated with various intermittent parameters in Microgrid have also been introduced in the proposed scheduling methodology. The objective function includes the operating cost of CDGs, the emission cost associated with CDGs, the battery cost, the cost of grid energy exchange, and the cost associated with load shedding. A penalty function is also incorporated in the cost function for violations of any constraints. Multiple scenarios are generated using Monte Carlo simulation to model uncertain parameters of Microgrid (MG). These scenarios consist of the worst as well as the best possible cases, reflecting the microgrid's real-time operation. Furthermore, these scenarios are reduced by using a k-means clustering algorithm. The reduced procedures for uncertain parameters will be used to obtain the minimum cost of MG with the help of an optimisation algorithm. In this work, a meta-heuristic approach, grey wolf optimisation (GWO), is used to minimize the developed cost optimisation function of MG. The standard LV Microgrid CIGRE test network is used to validate the proposed methodology. Results are obtained for different cases by considering different priorities to the sub-objectives using GWO algorithm. The obtained results are compared with the results of Jaya and PSO (particle swarm optimization) algorithms to validate the efficacy of the GWO method for the proposed optimization problem.
将可再生能源整合到智能电网中可提高系统弹性,实现可持续的供需平衡,并以最小的漏电流产生清洁电力。然而,可再生能源本质上是间歇性的。因此,有必要制定调度策略,以优化基于混合光伏-风能-可控分布式发电机的微电网在并网和独立运行模式下的运行。在本论文中,开发了一种基于优先级的成本优化函数,以显示一个成本组件相对于另一个成本组件对于微电网优化运行的相对重要性。所提出的调度方法中还引入了与微电网中各种间歇性参数相关的不确定性。目标函数包括可控分布式发电机(CDGs)的运行成本、与CDGs相关的排放成本、电池成本、电网能量交换成本以及与负荷削减相关的成本。对于违反任何约束的情况,还在成本函数中纳入了惩罚函数。使用蒙特卡罗模拟生成多个场景,以对微电网(MG)的不确定参数进行建模。这些场景包括最坏以及最好的可能情况,反映了微电网的实时运行。此外,通过使用k均值聚类算法减少这些场景。不确定参数的简化过程将用于借助优化算法获得微电网的最低成本。在这项工作中,采用了一种元启发式方法,即灰狼优化(GWO),来最小化所开发的微电网成本优化函数。使用标准的低压微电网CIGRE测试网络来验证所提出的方法。通过使用GWO算法对不同子目标考虑不同优先级,得到了不同情况下的结果。将所得结果与Jaya算法和粒子群优化(PSO)算法的结果进行比较,以验证GWO方法对于所提出优化问题的有效性。