Meng Ling-Wu, Xie Xiao-Liang, Zhou Xiao-Hu, Liu Shi-Qi, Hou Zeng-Guang
School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.
State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
Biomimetics (Basel). 2024 Mar 6;9(3):163. doi: 10.3390/biomimetics9030163.
Chronic total occlusion (CTO) is one of the most severe and sophisticated vascular stenosis because of complete blockage, greater operation difficulty, and lower procedural success rate. This study proposes a hydraulic-driven soft robot imitating the earthworm's locomotion to assist doctors or operators in actively opening thrombi in coronary or peripheral artery vessels. Firstly, a three-actuator bionic soft robot is developed based on earthworms' physiological structure. The soft robot's locomotion gait inspired by the earthworm's mechanism is designed. Secondly, the influence of structure parameters on actuator deformation, stress, and strain is explored, which can help us determine the soft actuators' optimal structure parameters. Thirdly, the relationship between hydraulic pressure and actuator deformation is investigated by performing finite element analysis using the bidirectional fluid-structure interaction (FSI) method. The kinematic models of the soft actuators are established to provide a valuable reference for the soft actuators' motion control.
慢性完全闭塞(CTO)是最严重、最复杂的血管狭窄之一,因其完全堵塞、手术难度大且手术成功率低。本研究提出一种模仿蚯蚓运动的液压驱动软体机器人,以协助医生或操作人员主动打开冠状动脉或外周动脉血管中的血栓。首先,基于蚯蚓的生理结构开发了一种三驱动仿生软体机器人。设计了受蚯蚓运动机制启发的软体机器人运动步态。其次,探索了结构参数对驱动器变形、应力和应变的影响,这有助于我们确定软体驱动器的最佳结构参数。第三,采用双向流固耦合(FSI)方法进行有限元分析,研究液压与驱动器变形之间的关系。建立了软体驱动器的运动学模型,为软体驱动器的运动控制提供了有价值的参考。