Suppr超能文献

用于材料结构设计的Voronoi图算法向正交各向异性空间的扩展。

Extension of the Voronoi Diagram Algorithm to Orthotropic Space for Material Structural Design.

作者信息

Bolshakov Pavel, Kharin Nikita, Agathonov Alexander, Kalinin Evgeniy, Sachenkov Oskar

机构信息

Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia.

Department Machines Science and Engineering Graphics, Kazan National Research Technical University named after A.N. Tupolev, 420111 Kazan, Russia.

出版信息

Biomimetics (Basel). 2024 Mar 19;9(3):185. doi: 10.3390/biomimetics9030185.

Abstract

Nowadays, the interaction of additive technologies and methods for designing or optimizing porous structures has yielded good results. Construction with complex microarchitectures can be created using this approach. Varying the microarchitecture leads to changes in weight and mechanical properties. However, there are problems with geometry reconstruction when dealing with complex microarchitecture. One approach is to use Voronoi cells for geometry reconstruction. In this article, an extension of the Voronoi diagram algorithm to orthotropic space for material structural design is presented. The inputs for the method include porosity, ellipticity, and ellipticity direction fields. As an example, a beam with fixed end faces and center kinematic loading was used. To estimate robust results for different numbers of clusters, 50, 75, and 100 clusters are presented. The porosity for smoothed structures ranged from 21.5% up to 22.8%. The stress-strain state was determined for the resulting structures. The stiffness for the initial and smoothed structures was the same. However, in the case of 75 and 100 clusters, local stress factors appeared in the smoothed structure. The maximum von Mises stress decreased by 20% for all smoothed structures in the area of kinematic loading and increased by 20% for all smoothed structures in the area of end faces.

摘要

如今,增材制造技术与用于设计或优化多孔结构的方法之间的相互作用已取得了良好成果。利用这种方法可以构建具有复杂微观结构的建筑。改变微观结构会导致重量和机械性能发生变化。然而,在处理复杂微观结构时,存在几何重建问题。一种方法是使用Voronoi单元进行几何重建。在本文中,提出了一种将Voronoi图算法扩展到正交各向异性空间用于材料结构设计的方法。该方法的输入包括孔隙率、椭圆率和椭圆率方向场。作为一个例子,使用了一个端面固定且中心受运动载荷的梁。为了估计不同簇数的稳健结果,给出了50、75和100个簇的情况。平滑结构的孔隙率范围为21.5%至22.8%。确定了所得结构的应力应变状态。初始结构和平滑结构的刚度相同。然而,在75和100个簇的情况下,平滑结构中出现了局部应力因子。在运动载荷区域,所有平滑结构的最大von Mises应力降低了20%,在端面区域,所有平滑结构的最大von Mises应力增加了20%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2d6/10968305/94d07e30d6eb/biomimetics-09-00185-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验