Suppr超能文献

用于骨科应用的晶格结构的数值与实验研究

Numerical and Experimental Study of a Lattice Structure for Orthopedic Applications.

作者信息

Kharin Nikita, Bolshakov Pavel, Kuchumov Alex G

机构信息

Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia.

Institute of Engineering, Kazan Federal University, 420008 Kazan, Russia.

出版信息

Materials (Basel). 2023 Jan 12;16(2):744. doi: 10.3390/ma16020744.

Abstract

Prosthetic reconstructions provide anatomical reconstruction to replace bones and joints. However, these operations have a high number of short- and long-term complications. One of the main problems in surgery is that the implant remains in the body after the operation. The solution to this problem is to use biomaterial for the implant, but biomaterial does not have the required strength characteristics. The implant must also have a mesh-like structure so that the bone can grow into the implant. The additive manufacturing process is ideal for the production of such a structure. The study deals with the correlation between different prosthetic structures, namely, the relationship between geometry, mechanical properties and biological additivity. The main challenge is to design an endoprosthesis that will mimic the geometric structure of bone and also meet the conditions of strength, hardness and stiffness. In order to match the above factors, it is necessary to develop appropriate algorithms. The main objective of this study is to augment the algorithm to ensure minimum structural weight without changing the strength characteristics of the lattice endoprosthesis of long bones. The iterative augmentation process of the algorithm was implemented by removing low-loaded ribs. A low-loaded rib is a rib with a maximum stress that is less than the threshold stress. Values within the range (10, 13, 15, 16, 17, 18, 19 and 20 MPa) were taken as the threshold stress. The supplement to the algorithm was applied to the initial structure and the designed structure at threshold stresses σ = 10, 13, 15, 16, 17, 18, 19 and 20 MPa. A Pareto diagram for maximum stress and the number of ribs is plotted for all cases of the design: original, engineered and lightened structures. The most optimal was the designed "lightweight" structure under the condition σ = 17 MPa. The maximum stress was 147.48 MPa, and the number of ribs was 741. Specimens were manufactured using additive manufacturing and then tested for four-point bending.

摘要

假体重建可提供解剖结构重建,以替换骨骼和关节。然而,这些手术存在大量短期和长期并发症。手术中的一个主要问题是,植入物在术后会留在体内。解决这个问题的方法是使用生物材料制作植入物,但生物材料不具备所需的强度特性。植入物还必须具有网状结构,以便骨骼能够长入植入物。增材制造工艺非常适合生产这种结构。该研究探讨了不同假体结构之间的相关性,即几何形状、力学性能和生物可加性之间的关系。主要挑战在于设计一种能模仿骨骼几何结构且满足强度、硬度和刚度条件的内置假体。为了匹配上述因素,有必要开发合适的算法。本研究的主要目标是改进算法,以确保在不改变长骨晶格内置假体强度特性的情况下使结构重量最小化。通过去除低负荷肋条来实现算法的迭代改进过程。低负荷肋条是指最大应力小于阈值应力的肋条。取值范围(10、13、15、16、17、18、19和20兆帕)内的值被用作阈值应力。在阈值应力σ = 10、13、15、16、17、18、19和20兆帕时,将算法补充应用于初始结构和设计结构。针对所有设计情况(原始结构、工程结构和轻量化结构)绘制了最大应力与肋条数的帕累托图。在σ = 17兆帕的条件下,设计的“轻量化”结构最为理想。最大应力为147.48兆帕,肋条数为741。使用增材制造工艺制造试件,然后进行四点弯曲测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abef/9864782/45dadbacb8d4/materials-16-00744-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验