Suppr超能文献

当前的人工智能状态如何引导关于通用智能的未来讨论?

How Can the Current State of AI Guide Future Conversations of General Intelligence?

作者信息

Kanaya Tomoe, Magine Ali

机构信息

Department of Psychological Science, Claremont McKenna College, Claremont, CA 91711, USA.

Independent Researcher, Raleigh, NC 27695, USA.

出版信息

J Intell. 2024 Mar 20;12(3):36. doi: 10.3390/jintelligence12030036.

Abstract

Similar to the field of human intelligence, artificial intelligence (AI) has experienced a long history of advances and controversies regarding its definition, assessment, and application. Starting over 70 years ago, AI set out to achieve a single, general-purpose technology that could overcome many tasks in a similar fashion to humans. However, until recently, implementations were based on narrowly defined tasks, making the systems inapplicable to even slight variations of the same task. With recent advances towards more generality, the contemplation of artificial general intelligence (AGI) akin to human general intelligence (HGI) can no longer be easily dismissed. We follow this line of inquiry and outline some of the key questions and conceptual challenges that must be addressed in order to integrate AGI and HGI and to enable future progress towards a unified field of general intelligence.

摘要

与人类智能领域类似,人工智能(AI)在其定义、评估和应用方面经历了漫长的发展历程,也引发了诸多争议。70多年前,人工智能就开始致力于开发一种通用技术,使其能够像人类一样完成众多任务。然而,直到最近,人工智能的应用都基于狭义定义的任务,这使得这些系统甚至无法应对同一任务的轻微变化。随着近年来朝着更通用化方向的发展,类似于人类通用智能(HGI)的通用人工智能(AGI)已不容忽视。我们沿着这一研究方向,概述了一些关键问题和概念性挑战,若要整合AGI和HGI,并推动未来向统一的通用智能领域发展,就必须解决这些问题和挑战。

相似文献

7
Human- versus Artificial Intelligence.人类与人工智能
Front Artif Intell. 2021 Mar 25;4:622364. doi: 10.3389/frai.2021.622364. eCollection 2021.
8
An architectural approach to modeling artificial general intelligence.一种用于对通用人工智能进行建模的架构方法。
Heliyon. 2023 Mar 10;9(3):e14443. doi: 10.1016/j.heliyon.2023.e14443. eCollection 2023 Mar.

本文引用的文献

1
AI's challenge of understanding the world.人工智能理解世界的挑战。
Science. 2023 Nov 10;382(6671):eadm8175. doi: 10.1126/science.adm8175.
2
Rethink reporting of evaluation results in AI.重新思考人工智能评估结果的报告方式。
Science. 2023 Apr 14;380(6641):136-138. doi: 10.1126/science.adf6369. Epub 2023 Apr 13.
3
The debate over understanding in AI's large language models.人工智能大型语言模型中的理解之争。
Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2215907120. doi: 10.1073/pnas.2215907120. Epub 2023 Mar 21.
8
Stereotype Threat.刻板印象威胁。
Annu Rev Psychol. 2016;67:415-37. doi: 10.1146/annurev-psych-073115-103235. Epub 2015 Sep 10.
9
The Flynn effect: a meta-analysis.弗林效应:一项荟萃分析。
Psychol Bull. 2014 Sep;140(5):1332-60. doi: 10.1037/a0037173. Epub 2014 Jun 30.
10
Intelligence: new findings and theoretical developments.智力:新发现与理论发展。
Am Psychol. 2012 Feb-Mar;67(2):130-59. doi: 10.1037/a0026699. Epub 2012 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验