Suppr超能文献

用于锌离子混合电容器的具有超高比电容和高体积能量密度的三维钒氮双掺杂TiC薄膜

Three-Dimensional Vanadium and Nitrogen Dual-Doped TiC Film with Ultra-High Specific Capacitance and High Volumetric Energy Density for Zinc-Ion Hybrid Capacitors.

作者信息

Jin Xinhui, Yue Siliang, Zhang Jiangcheng, Qian Liang, Guo Xiaohui

机构信息

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, The College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.

出版信息

Nanomaterials (Basel). 2024 Mar 8;14(6):490. doi: 10.3390/nano14060490.

Abstract

Zinc-ion hybrid capacitors (ZICs) can achieve high energy and power density, ultralong cycle life, and a wide operating voltage window, and they are widely used in wearable devices, portable electronics devices, and other energy storage fields. The design of advanced ZICs with high specific capacity and energy density remains a challenge. In this work, a novel kind of V, N dual-doped TiC film with a three-dimensional (3D) porous structure (3D V-, N-TiC) based on Zn-ion pre-intercalation can be fabricated via a simple synthetic process. The stable 3D structure and heteroatom doping provide abundant ion transport channels and numerous surface active sites. The prepared 3D V-, N-TiC film can deliver unexpectedly high specific capacitance of 855 F g (309 mAh g) and demonstrates 95.26% capacitance retention after 5000 charge/discharge cycles. In addition, the energy storage mechanism of 3D V-, N-TiC electrodes is the chemical adsorption of H/Zn, which is confirmed by ex situ XRD and ex situ XPS. ZIC full cells with a competitive energy density (103 Wh kg) consist of a 3D V-, N-TiC cathode and a zinc foil anode. The impressive results provide a feasible strategy for developing high-performance MXene-based energy storage devices in various energy-related fields.

摘要

锌离子混合电容器(ZICs)能够实现高能量和功率密度、超长循环寿命以及宽工作电压窗口,并且它们被广泛应用于可穿戴设备、便携式电子设备及其他储能领域。设计具有高比容量和能量密度的先进ZICs仍然是一项挑战。在这项工作中,基于锌离子预嵌入,通过一种简单的合成工艺可以制备出一种具有三维(3D)多孔结构的新型V、N双掺杂TiC薄膜(3D V-、N-TiC)。稳定的3D结构和杂原子掺杂提供了丰富的离子传输通道和大量的表面活性位点。制备的3D V-、N-TiC薄膜能够提供高达855 F g(309 mAh g)的意外高比电容,并且在5000次充放电循环后电容保持率为95.26%。此外,3D V-、N-TiC电极的储能机制是H/Zn的化学吸附,这通过非原位XRD和非原位XPS得到了证实。具有竞争力的能量密度(103 Wh kg)的ZIC全电池由3D V-、N-TiC阴极和锌箔阳极组成。这些令人印象深刻的结果为在各种能源相关领域开发高性能的基于MXene的储能设备提供了一种可行的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a789/10974172/8fe32d7d0d35/nanomaterials-14-00490-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验