School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, China.
Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
J Imaging Inform Med. 2024 Oct;37(5):2649-2661. doi: 10.1007/s10278-024-01084-z. Epub 2024 Mar 27.
Breast cancer has a high incidence and mortality rate among women, early diagnosis is essential as it gives insight regarding the most appropriate therapeutic strategy for each case. Among all imaging diagnostic methods, digital breast tomosynthesis (DBT) is effective for early breast cancer detection. In DBT images, high-density object artifacts are generated when imaging objects with high X-ray absorptivity, which include metal artifacts, ripple artifacts, and deformation artifacts. In this study, we analyze the causes of these artifacts and propose a set of high-density object reconstruction methods based on iterative algorithms. Our method includes a reprojection-based high-density object projection data segmentation algorithm and an iterative reconstruction algorithm based on volume expansion. The experiments on simulation data and the human breast data with artificial surgical needles prove the effectiveness of our method. By using our algorithm, the problem of distorting the shape, size, and position of high-density objects during DBT reconstruction is raised, the influence of these artifacts is reduced, and the quality of the DBT reconstructed image is improved. We hope that our algorithm might contribute to promoting the usage of DBT.
乳腺癌在女性中的发病率和死亡率都很高,早期诊断至关重要,因为它可以深入了解针对每个病例的最佳治疗策略。在所有的影像学诊断方法中,数字乳腺断层合成术(DBT)是早期乳腺癌检测的有效方法。在 DBT 图像中,当对具有高 X 射线吸收率的成像物体进行成像时,会产生高密度物体伪影,包括金属伪影、波纹伪影和变形伪影。在本研究中,我们分析了这些伪影的原因,并提出了一组基于迭代算法的高密度物体重建方法。我们的方法包括基于重新投影的高密度物体投影数据分割算法和基于体积扩展的迭代重建算法。模拟数据和带有人工手术针的人体乳腺数据的实验证明了我们方法的有效性。通过使用我们的算法,在 DBT 重建过程中解决了高密度物体的形状、大小和位置扭曲的问题,降低了这些伪影的影响,提高了 DBT 重建图像的质量。我们希望我们的算法能够有助于促进 DBT 的使用。