Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
Int J Biol Macromol. 2024 May;266(Pt 2):131082. doi: 10.1016/j.ijbiomac.2024.131082. Epub 2024 Mar 25.
The present work deals with the evaluation of the physiochemical and biomedical properties of hydrogels derived from copolymerization of tragacanth gum (TG) and gelatin for use in drug delivery (DD) applications. Copolymers were characterized by field emission-scanning electron micrographs (FE-SEM), electron dispersion X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), C-nuclear magnetic resonance (NMR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. FE-SEM revealed heterogeneous morphology and XRD analysis demonstrated an amorphous nature with short range pattern of polymer chains within the copolymers. The release of the drug ofloxacin occurred through a non-Fickian diffusion mechanism and the release profile was best described by the Korsmeyer-Peppas kinetic model. The hydrogels exhibited blood compatibility and demonstrated a thrombogenicity value of 75.63 ± 1.98 % during polymer-blood interactions. Polymers revealed mucoadhesive character during polymer-mucous membrane interactions and required 119 ± 8.54 mN detachment forces to detach from the biological membrane. The copolymers illustrated the antioxidant properties as evidenced by 2, 2'-diphenylpicrylhydrazyl (DPPH) assay which demonstrated a 65.71 ± 3.68 % free radical inhibition. Swelling properties analysis demonstrated that by change in monomer and cross linker content during the reaction increased the crosslinking of the network. These results suggest that the pore size of network hydrogels could be controlled as per the requirement of DD systems. The copolymers were prepared at optimized reaction conditions using 14.54 × 10 molL of acrylic acid monomer and 25.0 × 10 molL of crosslinker NNMBA. The optimized hydrogels exhibited a crosslink density of 2.227 × 10 molcm and a mesh size of 7.966 nm. Additionally, the molecular weight between two neighboring crosslinks in the hydrogels was determined to be 5332.209 gmol.The results indicated that the combination of protein-polysaccharide has led to the development of hydrogels suitable for potential applications in sustained drug delivery.
本工作研究了黄原胶(TG)和明胶共聚得到的水凝胶的物理化学和生物医学性质,用于药物传递(DD)应用。共聚物的特性通过场发射扫描电子显微镜(FE-SEM)、电子分散 X 射线分析(EDAX)、傅里叶变换红外光谱(FTIR)、C 核磁共振(NMR)、热重分析(TGA)、差示扫描量热法(DSC)和 X 射线衍射(XRD)分析进行了表征。FE-SEM 显示出不均匀的形态,XRD 分析表明聚合物链在共聚物中具有无定形的短程图案。药物氧氟沙星的释放通过非 Fickian 扩散机制发生,释放曲线通过 Korsmeyer-Peppas 动力学模型得到最佳描述。水凝胶表现出血液相容性,在聚合物-血液相互作用期间显示出 75.63±1.98%的血栓形成值。聚合物在聚合物-粘膜膜相互作用期间表现出粘膜粘附特性,从生物膜上分离需要 119±8.54 mN 的分离力。共聚物通过 2,2'-二苯基苦基肼(DPPH)测定显示出 65.71±3.68%的自由基抑制,证明具有抗氧化性质。溶胀性能分析表明,通过改变反应过程中的单体和交联剂含量,可以增加网络的交联。这些结果表明,可以根据 DD 系统的要求控制网络水凝胶的孔径。在优化的反应条件下,使用 14.54×10molL 的丙烯酸单体和 25.0×10molL 的交联剂 NNMBA 制备共聚物。优化后的水凝胶具有 2.227×10molcm 的交联密度和 7.966nm 的网格尺寸。此外,水凝胶中两个相邻交联点之间的分子量确定为 5332.209gmol。结果表明,蛋白质-多糖的结合导致了适用于持续药物传递的潜在应用的水凝胶的发展。