Suppr超能文献

利用 AutoLFADS 识别精确性手臂运动中初始和校正阶段的独特神经特征。

Identifying Distinct Neural Features between the Initial and Corrective Phases of Precise Reaching Using AutoLFADS.

机构信息

Bioengineering Program, University of Kansas, Lawrence, Kansas 66045.

Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322.

出版信息

J Neurosci. 2024 May 15;44(20):e1224232024. doi: 10.1523/JNEUROSCI.1224-23.2024.

Abstract

Many initial movements require subsequent corrective movements, but how the motor cortex transitions to make corrections and how similar the encoding is to initial movements is unclear. In our study, we explored how the brain's motor cortex signals both initial and corrective movements during a precision reaching task. We recorded a large population of neurons from two male rhesus macaques across multiple sessions to examine the neural firing rates during not only initial movements but also subsequent corrective movements. AutoLFADS, an autoencoder-based deep-learning model, was applied to provide a clearer picture of neurons' activity on individual corrective movements across sessions. Decoding of reach velocity generalized poorly from initial to corrective submovements. Unlike initial movements, it was challenging to predict the velocity of corrective movements using traditional linear methods in a single, global neural space. We identified several locations in the neural space where corrective submovements originated after the initial reaches, signifying firing rates different than the baseline before initial movements. To improve corrective movement decoding, we demonstrate that a state-dependent decoder incorporating the population firing rates at the initiation of correction improved performance, highlighting the diverse neural features of corrective movements. In summary, we show neural differences between initial and corrective submovements and how the neural activity encodes specific combinations of velocity and position. These findings are inconsistent with assumptions that neural correlations with kinematic features are global and independent, emphasizing that traditional methods often fall short in describing these diverse neural processes for online corrective movements.

摘要

许多初始运动需要后续的校正运动,但运动皮层如何过渡以进行校正,以及与初始运动的编码有多相似尚不清楚。在我们的研究中,我们探讨了大脑运动皮层在精确伸手任务中如何同时发出初始运动和校正运动的信号。我们在多个会话中从两只雄性恒河猴记录了大量神经元,以检查不仅在初始运动期间而且在随后的校正运动期间神经元的放电率。基于自动编码器的深度学习模型 AutoLFADS 被应用于提供更清晰的单个校正运动期间神经元活动的图像,跨会话。从初始运动到校正子运动,运动速度的解码效果很差。与初始运动不同,使用传统的线性方法在单个全局神经空间中预测校正运动的速度具有挑战性。我们在神经空间中确定了几个位置,这些位置在初始伸展后是校正子运动的起点,表明在初始运动之前的基线之前的放电率与基线不同。为了提高校正运动的解码效果,我们证明了一种包含校正开始时的群体放电率的状态相关解码器可以提高性能,突出了校正运动的多样化神经特征。总之,我们展示了初始和校正子运动之间的神经差异,以及神经活动如何编码速度和位置的特定组合。这些发现与神经相关性与运动特征是全局和独立的假设不一致,强调传统方法通常在描述这些用于在线校正运动的多样化神经过程时效果不佳。

相似文献

6
Heterogeneous neural coding of corrective movements in motor cortex.运动皮层中校正运动的异质神经编码。
Front Neural Circuits. 2013 Apr 4;7:51. doi: 10.3389/fncir.2013.00051. eCollection 2013.
7
Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.使用任务特定子空间进行虚拟自我运动的皮质控制。
J Neurosci. 2022 Jan 12;42(2):220-239. doi: 10.1523/JNEUROSCI.2687-20.2021. Epub 2021 Oct 29.

本文引用的文献

4
The science and engineering behind sensitized brain-controlled bionic hands.敏化脑控仿生手的科学与工程。
Physiol Rev. 2022 Apr 1;102(2):551-604. doi: 10.1152/physrev.00034.2020. Epub 2021 Sep 20.
7
Single-trial neural dynamics are dominated by richly varied movements.单试次神经动力学由丰富多样的运动所主导。
Nat Neurosci. 2019 Oct;22(10):1677-1686. doi: 10.1038/s41593-019-0502-4. Epub 2019 Sep 24.
8
The language of the brain: real-world neural population codes.大脑的语言:现实世界中的神经群体编码
Curr Opin Neurobiol. 2019 Oct;58:30-36. doi: 10.1016/j.conb.2019.06.005. Epub 2019 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验