Suppr超能文献

运动皮层中的潜在因素和动态及其在脑机接口中的应用。

Latent Factors and Dynamics in Motor Cortex and Their Application to Brain-Machine Interfaces.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322,

Department of Neurosurgery, Emory University, Atlanta, Georgia 30322.

出版信息

J Neurosci. 2018 Oct 31;38(44):9390-9401. doi: 10.1523/JNEUROSCI.1669-18.2018.

Abstract

In the 1960s, Evarts first recorded the activity of single neurons in motor cortex of behaving monkeys (Evarts, 1968). In the 50 years since, great effort has been devoted to understanding how single neuron activity relates to movement. Yet these single neurons exist within a vast network, the nature of which has been largely inaccessible. With advances in recording technologies, algorithms, and computational power, the ability to study these networks is increasing exponentially. Recent experimental results suggest that the dynamical properties of these networks are critical to movement planning and execution. Here we discuss this dynamical systems perspective and how it is reshaping our understanding of the motor cortices. Following an overview of key studies in motor cortex, we discuss techniques to uncover the "latent factors" underlying observed neural population activity. Finally, we discuss efforts to use these factors to improve the performance of brain-machine interfaces, promising to make these findings broadly relevant to neuroengineering as well as systems neuroscience.

摘要

在 20 世纪 60 年代,Evarts 首次记录了行为猴子运动皮层中单神经元的活动(Evarts,1968)。在过去的 50 年里,人们付出了巨大的努力来理解单神经元活动与运动的关系。然而,这些单神经元存在于一个庞大的网络中,其性质在很大程度上是无法获得的。随着记录技术、算法和计算能力的进步,研究这些网络的能力正在呈指数级增长。最近的实验结果表明,这些网络的动力学特性对运动规划和执行至关重要。在这里,我们讨论了这种动态系统的观点,以及它如何重塑我们对运动皮层的理解。在概述了运动皮层的关键研究之后,我们讨论了揭示观察到的神经群体活动背后的“潜在因素”的技术。最后,我们讨论了利用这些因素来提高脑机接口性能的努力,有望使这些发现广泛适用于神经工程和系统神经科学。

相似文献

1
Latent Factors and Dynamics in Motor Cortex and Their Application to Brain-Machine Interfaces.
J Neurosci. 2018 Oct 31;38(44):9390-9401. doi: 10.1523/JNEUROSCI.1669-18.2018.
2
Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.
J Neural Eng. 2013 Apr;10(2):026008. doi: 10.1088/1741-2560/10/2/026008. Epub 2013 Feb 21.
3
A machine learning approach to characterize sequential movement-related states in premotor and motor cortices.
J Neurophysiol. 2022 May 1;127(5):1348-1362. doi: 10.1152/jn.00368.2021. Epub 2022 Feb 16.
4
From Parametric Representation to Dynamical System: Shifting Views of the Motor Cortex in Motor Control.
Neurosci Bull. 2022 Jul;38(7):796-808. doi: 10.1007/s12264-022-00832-x. Epub 2022 Mar 17.
5
Recasting brain-machine interface design from a physical control system perspective.
J Comput Neurosci. 2015 Oct;39(2):107-18. doi: 10.1007/s10827-015-0566-4. Epub 2015 Jul 5.
6
Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6513-6. doi: 10.1109/EMBC.2014.6945120.
7
The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces.
Exp Neurol. 2017 Jan;287(Pt 4):437-451. doi: 10.1016/j.expneurol.2016.08.003. Epub 2016 Aug 7.
8
A muscle-activity-dependent gain between motor cortex and EMG.
J Neurophysiol. 2019 Jan 1;121(1):61-73. doi: 10.1152/jn.00329.2018. Epub 2018 Oct 31.
9
Motor decoding from the posterior parietal cortex using deep neural networks.
J Neural Eng. 2023 May 19;20(3). doi: 10.1088/1741-2552/acd1b6.
10
Combining decoder design and neural adaptation in brain-machine interfaces.
Neuron. 2014 Nov 19;84(4):665-80. doi: 10.1016/j.neuron.2014.08.038.

引用本文的文献

2
Interactively Integrating Reach and Grasp Information in Macaque Premotor Cortex.
Neurosci Bull. 2025 Jun 21. doi: 10.1007/s12264-025-01430-3.
3
Stabilizing brain-computer interfaces through alignment of latent dynamics.
Nat Commun. 2025 May 19;16(1):4662. doi: 10.1038/s41467-025-59652-y.
6
Tracking the topology of neural manifolds across populations.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2407997121. doi: 10.1073/pnas.2407997121. Epub 2024 Nov 8.
7
Rastermap: a discovery method for neural population recordings.
Nat Neurosci. 2025 Jan;28(1):201-212. doi: 10.1038/s41593-024-01783-4. Epub 2024 Oct 16.
8
Activity-dependent transcriptional programs in memory regulate motor recovery after stroke.
Commun Biol. 2024 Aug 25;7(1):1048. doi: 10.1038/s42003-024-06723-3.
9
The speech neuroprosthesis.
Nat Rev Neurosci. 2024 Jul;25(7):473-492. doi: 10.1038/s41583-024-00819-9. Epub 2024 May 14.
10
Identifying Distinct Neural Features between the Initial and Corrective Phases of Precise Reaching Using AutoLFADS.
J Neurosci. 2024 May 15;44(20):e1224232024. doi: 10.1523/JNEUROSCI.1224-23.2024.

本文引用的文献

1
A cryptography-based approach for movement decoding.
Nat Biomed Eng. 2017 Dec;1(12):967-976. doi: 10.1038/s41551-017-0169-7. Epub 2017 Dec 12.
2
Spontaneous behaviors drive multidimensional, brainwide activity.
Science. 2019 Apr 19;364(6437):255. doi: 10.1126/science.aav7893. Epub 2019 Apr 18.
4
A Neural Population Mechanism for Rapid Learning.
Neuron. 2018 Nov 21;100(4):964-976.e7. doi: 10.1016/j.neuron.2018.09.030. Epub 2018 Oct 18.
5
Inferring single-trial neural population dynamics using sequential auto-encoders.
Nat Methods. 2018 Oct;15(10):805-815. doi: 10.1038/s41592-018-0109-9. Epub 2018 Sep 17.
6
Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis.
Neuron. 2018 Jun 27;98(6):1099-1115.e8. doi: 10.1016/j.neuron.2018.05.015. Epub 2018 Jun 7.
7
Flexible Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics.
Neuron. 2018 Jun 6;98(5):1005-1019.e5. doi: 10.1016/j.neuron.2018.05.020.
8
Neural Dynamics of Variable Grasp-Movement Preparation in the Macaque Frontoparietal Network.
J Neurosci. 2018 Jun 20;38(25):5759-5773. doi: 10.1523/JNEUROSCI.2557-17.2018. Epub 2018 May 24.
9
Intracortical recording stability in human brain-computer interface users.
J Neural Eng. 2018 Aug;15(4):046016. doi: 10.1088/1741-2552/aab7a0. Epub 2018 Mar 19.
10
Learning by neural reassociation.
Nat Neurosci. 2018 Apr;21(4):607-616. doi: 10.1038/s41593-018-0095-3. Epub 2018 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验