Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322,
Department of Neurosurgery, Emory University, Atlanta, Georgia 30322.
J Neurosci. 2018 Oct 31;38(44):9390-9401. doi: 10.1523/JNEUROSCI.1669-18.2018.
In the 1960s, Evarts first recorded the activity of single neurons in motor cortex of behaving monkeys (Evarts, 1968). In the 50 years since, great effort has been devoted to understanding how single neuron activity relates to movement. Yet these single neurons exist within a vast network, the nature of which has been largely inaccessible. With advances in recording technologies, algorithms, and computational power, the ability to study these networks is increasing exponentially. Recent experimental results suggest that the dynamical properties of these networks are critical to movement planning and execution. Here we discuss this dynamical systems perspective and how it is reshaping our understanding of the motor cortices. Following an overview of key studies in motor cortex, we discuss techniques to uncover the "latent factors" underlying observed neural population activity. Finally, we discuss efforts to use these factors to improve the performance of brain-machine interfaces, promising to make these findings broadly relevant to neuroengineering as well as systems neuroscience.
在 20 世纪 60 年代,Evarts 首次记录了行为猴子运动皮层中单神经元的活动(Evarts,1968)。在过去的 50 年里,人们付出了巨大的努力来理解单神经元活动与运动的关系。然而,这些单神经元存在于一个庞大的网络中,其性质在很大程度上是无法获得的。随着记录技术、算法和计算能力的进步,研究这些网络的能力正在呈指数级增长。最近的实验结果表明,这些网络的动力学特性对运动规划和执行至关重要。在这里,我们讨论了这种动态系统的观点,以及它如何重塑我们对运动皮层的理解。在概述了运动皮层的关键研究之后,我们讨论了揭示观察到的神经群体活动背后的“潜在因素”的技术。最后,我们讨论了利用这些因素来提高脑机接口性能的努力,有望使这些发现广泛适用于神经工程和系统神经科学。