Shang Haikun, Liu Zhidong, Wei Yanlei, Zhang Shen
Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132012, China.
Entropy (Basel). 2024 Feb 22;26(3):186. doi: 10.3390/e26030186.
Dissolved gas analysis (DGA) in transformer oil, which analyzes its gas content, is valuable for promptly detecting potential faults in oil-immersed transformers. Given the limitations of traditional transformer fault diagnostic methods, such as insufficient gas characteristic components and a high misjudgment rate for transformer faults, this study proposes a transformer fault diagnosis model based on multi-scale approximate entropy and optimized convolutional neural networks (CNNs). This study introduces an improved sparrow search algorithm (ISSA) for optimizing CNN parameters, establishing the ISSA-CNN transformer fault diagnosis model. The dissolved gas components in the transformer oil are analyzed, and the multi-scale approximate entropy of the gas content under different fault modes is calculated. The computed entropy values are then used as feature parameters for the ISSA-CNN model to derive diagnostic results. Experimental data analysis demonstrates that multi-scale approximate entropy effectively characterizes the dissolved gas components in the transformer oil, significantly improving the diagnostic efficiency. Comparative analysis with BPNN, ELM, and CNNs validates the effectiveness and superiority of the proposed ISSA-CNN diagnostic model across various evaluation metrics.
变压器油中的溶解气体分析(DGA)可分析其气体含量,对于及时检测油浸式变压器中的潜在故障很有价值。鉴于传统变压器故障诊断方法存在局限性,如气体特征成分不足以及变压器故障误判率高,本研究提出了一种基于多尺度近似熵和优化卷积神经网络(CNN)的变压器故障诊断模型。本研究引入改进的麻雀搜索算法(ISSA)来优化CNN参数,建立了ISSA-CNN变压器故障诊断模型。分析变压器油中的溶解气体成分,计算不同故障模式下气体含量的多尺度近似熵。然后将计算出的熵值用作ISSA-CNN模型的特征参数以得出诊断结果。实验数据分析表明,多尺度近似熵有效地表征了变压器油中的溶解气体成分,显著提高了诊断效率。与BPNN、ELM和CNN的对比分析验证了所提出的ISSA-CNN诊断模型在各种评估指标上的有效性和优越性。