Suppr超能文献

基于概率神经网络和生物启发式优化器的新型变压器故障诊断方法。

A Novel Transformers Fault Diagnosis Method Based on Probabilistic Neural Network and Bio-Inspired Optimizer.

机构信息

College of Information Engineering, Nanchang University, Nanchang 330031, China.

College of Qianhu, Nanchang University, Nanchang 330031, China.

出版信息

Sensors (Basel). 2021 May 23;21(11):3623. doi: 10.3390/s21113623.

Abstract

Since it is difficult for the traditional fault diagnosis method based on dissolved gas analysis (DGA) to meet today's engineering needs in terms of diagnostic accuracy and stability, this paper proposes an artificial intelligence fault diagnosis method based on a probabilistic neural network (PNN) and bio-inspired optimizer. The PNN is used as the basic classifier of the fault diagnosis model, and the bio-inspired optimizer, improved salp swarm algorithm (ISSA), is used to optimize the hidden layer smoothing factor of PNN, which stably improves the classification performance of PNN. Compared with the traditional SSA, the sine cosine algorithm (SCA) and disruption operator are introduced in ISSA, which effectively improves the exploration capability and convergence speed. To verify the engineering applicability of the proposed method, the ISSA-PNN model was developed and tested using sensor data provided by Jiangxi Province Power Supply Company. In addition, the method is compared with machine learning methods such as support vector machine (SVM), back propagation neural network (BPNN), multi-layer perceptron (MLP), and traditional fault diagnosis methods such as the international electrotechnical commission (IEC) ratio method. The results show that the proposed method has a strong learning ability for complex fault data and has advantages in accuracy and robustness compared to other methods.

摘要

由于基于溶解气体分析(DGA)的传统故障诊断方法在诊断准确性和稳定性方面难以满足当今工程的需求,因此本文提出了一种基于概率神经网络(PNN)和仿生优化器的人工智能故障诊断方法。PNN 用作故障诊断模型的基本分类器,而仿生优化器,改进的沙蝇群算法(ISSA),则用于优化 PNN 的隐藏层平滑因子,从而稳定地提高 PNN 的分类性能。与传统的 SSA 相比,ISSA 中引入了正弦余弦算法(SCA)和破坏算子,有效地提高了探索能力和收敛速度。为了验证所提出方法的工程适用性,使用江西省供电公司提供的传感器数据开发并测试了 ISSA-PNN 模型。此外,该方法还与机器学习方法(如支持向量机(SVM)、反向传播神经网络(BPNN)、多层感知器(MLP))以及国际电工委员会(IEC)比率法等传统故障诊断方法进行了比较。结果表明,该方法对复杂故障数据具有较强的学习能力,与其他方法相比,在准确性和鲁棒性方面具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7d/8196968/a29c439ffb9b/sensors-21-03623-g001.jpg

相似文献

2
Novel Probabilistic Neural Network Models Combined with Dissolved Gas Analysis for Fault Diagnosis of Oil-Immersed Power Transformers.
ACS Omega. 2021 Jul 8;6(28):18084-18098. doi: 10.1021/acsomega.1c01878. eCollection 2021 Jul 20.
3
Permanent magnet synchronous motor demagnetization fault diagnosis based on PCA-ISSA-PNN.
Sci Rep. 2024 Sep 20;14(1):21921. doi: 10.1038/s41598-024-72596-5.
7
An Integrated Approach Fusing CEEMD Energy Entropy and Sparrow Search Algorithm-Based PNN for Fault Diagnosis of Rolling Bearings.
Comput Intell Neurosci. 2022 Jul 22;2022:4835157. doi: 10.1155/2022/4835157. eCollection 2022.
8
Machine Learning-Based Sensor Data Modeling Methods for Power Transformer PHM.
Sensors (Basel). 2018 Dec 14;18(12):4430. doi: 10.3390/s18124430.
9
Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques.
PLoS One. 2015 Jun 23;10(6):e0129363. doi: 10.1371/journal.pone.0129363. eCollection 2015.

本文引用的文献

1
Machine Learning-Based Sensor Data Modeling Methods for Power Transformer PHM.
Sensors (Basel). 2018 Dec 14;18(12):4430. doi: 10.3390/s18124430.
2
Application of Reinforcement Learning Algorithms for the Adaptive Computation of the Smoothing Parameter for Probabilistic Neural Network.
IEEE Trans Neural Netw Learn Syst. 2015 Sep;26(9):2163-75. doi: 10.1109/TNNLS.2014.2376703. Epub 2014 Dec 19.
3
Incipient interturn fault diagnosis in induction machines using an analytic wavelet-based optimized Bayesian inference.
IEEE Trans Neural Netw Learn Syst. 2014 May;25(5):990-1001. doi: 10.1109/TNNLS.2013.2285552.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验