Suppr超能文献

最大几何量子熵

Maximum Geometric Quantum Entropy.

作者信息

Anza Fabio, Crutchfield James P

机构信息

Department of Mathematics Informatics and Geoscience, University of Trieste, Via Alfonso Valerio 2, 34127 Trieste, Italy.

Complexity Sciences Center and Physics Department, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.

出版信息

Entropy (Basel). 2024 Mar 1;26(3):225. doi: 10.3390/e26030225.

Abstract

Any given density matrix can be represented as an infinite number of ensembles of pure states. This leads to the natural question of how to uniquely select one out of the many, apparently equally-suitable, possibilities. Following Jaynes' information-theoretic perspective, this can be framed as an inference problem. We propose the Maximum Geometric Quantum Entropy Principle to exploit the notions of Quantum Information Dimension and Geometric Quantum Entropy. These allow us to quantify the entropy of fully arbitrary ensembles and select the one that maximizes it. After formulating the principle mathematically, we give the analytical solution to the maximization problem in a number of cases and discuss the physical mechanism behind the emergence of such maximum entropy ensembles.

摘要

任何给定的密度矩阵都可以表示为无限多个纯态系综。这就引出了一个自然的问题:如何从众多看似同样合适的可能性中唯一地选择一个。遵循杰恩斯的信息论观点,这可以被构建为一个推理问题。我们提出最大几何量子熵原理,以利用量子信息维度和几何量子熵的概念。这些使我们能够量化完全任意系综的熵,并选择使其最大化的系综。在对该原理进行数学表述之后,我们给出了一些情况下最大化问题的解析解,并讨论了这种最大熵系综出现背后的物理机制。

相似文献

1
Maximum Geometric Quantum Entropy.最大几何量子熵
Entropy (Basel). 2024 Mar 1;26(3):225. doi: 10.3390/e26030225.
2
New Equilibrium Ensembles for Isolated Quantum Systems.孤立量子系统的新平衡系综
Entropy (Basel). 2018 Sep 29;20(10):744. doi: 10.3390/e20100744.
3
Geometric quantum thermodynamics.几何量子热力学
Phys Rev E. 2022 Nov;106(5-1):054102. doi: 10.1103/PhysRevE.106.054102.
10
Entropy on charge density: making the quantum mechanical connection.电荷密度的熵:建立量子力学联系。
Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):86-9. doi: 10.1107/S0907444992009429.

引用本文的文献

1
Predictive Complexity of Quantum Subsystems.量子子系统的预测复杂性。
Entropy (Basel). 2024 Dec 7;26(12):1065. doi: 10.3390/e26121065.

本文引用的文献

1
Geometric quantum thermodynamics.几何量子热力学
Phys Rev E. 2022 Nov;106(5-1):054102. doi: 10.1103/PhysRevE.106.054102.
2
Eigenstate Thermalization for Degenerate Observables.简并可观测量的本征态热化。
Phys Rev Lett. 2018 Apr 13;120(15):150603. doi: 10.1103/PhysRevLett.120.150603.
3
How many bits does it take to track an open quantum system?跟踪一个开放量子系统需要多少比特?
Phys Rev Lett. 2011 Jan 14;106(2):020406. doi: 10.1103/PhysRevLett.106.020406.
5
Quantum mechanics as a classical theory.作为经典理论的量子力学。
Phys Rev D Part Fields. 1985 Mar 15;31(6):1341-1348. doi: 10.1103/physrevd.31.1341.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验