Suppr超能文献

通过多数据集的加权基因共表达网络鉴定盐敏感和盐耐受基因:中心化和差异相关分析。

Identification of Salt-Sensitive and Salt-Tolerant Genes through Weighted Gene Co-Expression Networks across Multiple Datasets: A Centralization and Differential Correlation Analysis.

机构信息

Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.

Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.

出版信息

Genes (Basel). 2024 Feb 28;15(3):316. doi: 10.3390/genes15030316.

Abstract

Salt stress is a significant challenge that severely hampers rice growth, resulting in decreased yield and productivity. Over the years, researchers have identified biomarkers associated with salt stress to enhance rice tolerance. However, the understanding of the mechanism underlying salt tolerance in rice remains incomplete due to the involvement of multiple genes. Given the vast amount of genomics and transcriptomics data available today, it is crucial to integrate diverse datasets to identify key genes that play essential roles during salt stress in rice. In this study, we propose an integration of multiple datasets to identify potential key transcription factors. This involves utilizing network analysis based on weighted co-expression networks, focusing on gene-centric measurement and differential co-expression relationships among genes. Consequently, our analysis reveals 86 genes located in markers from previous meta-QTL analysis. Moreover, six transcription factors, namely (), (), (), (), (), and (), exhibited significantly altered co-expression relationships between salt-sensitive and salt-tolerant rice networks. These identified genes hold potential as crucial references for further investigation into the functions of salt stress response in rice plants and could be utilized in the development of salt-resistant rice cultivars. Overall, our findings shed light on the complex genetic regulation underlying salt tolerance in rice and contribute to the broader understanding of rice's response to salt stress.

摘要

盐胁迫是严重影响水稻生长的重要挑战,导致产量和生产力下降。多年来,研究人员已经确定了与盐胁迫相关的生物标志物,以提高水稻的耐受性。然而,由于涉及多个基因,水稻耐盐性的机制理解仍不完整。鉴于当今可用的大量基因组学和转录组学数据,整合不同的数据集以确定在盐胁迫期间在水稻中发挥重要作用的关键基因至关重要。在这项研究中,我们提出了整合多个数据集以识别潜在关键转录因子的方法。这涉及利用基于加权共表达网络的网络分析,重点关注基因中心测量和基因之间的差异共表达关系。因此,我们的分析揭示了 86 个位于先前元 QTL 分析标记中的基因。此外,六个转录因子,即 ()、 ()、 ()、 ()、 ()和 (),在盐敏感和盐耐受水稻网络之间表现出显著改变的共表达关系。这些鉴定出的基因作为进一步研究水稻植物盐胁迫反应功能的重要参考,可用于开发耐盐水稻品种。总的来说,我们的研究结果阐明了水稻耐盐性的复杂遗传调控机制,并有助于更深入地了解水稻对盐胁迫的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fba/10970189/0dfbec65909b/genes-15-00316-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验