Buonocore Michela, De Biase Davide, Sorrentino Domenico, Giordano Antonio, Paciello Orlando, D'Ursi Anna Maria
Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino, 1, 80137 Napoli, Italy.
Department of Chemical Sciences, Research Centre on Bioactive Peptides (CIRPeB), University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Naples, Italy.
Life (Basel). 2024 Mar 2;14(3):334. doi: 10.3390/life14030334.
Coronaviruses are highly transmissible and pathogenic viruses for humans and animals. The vast quantity of information collected about SARS-CoV-2 during the pandemic helped to unveil details of the mechanisms behind the infection, which are still largely elusive. Recent research demonstrated that different class I/II human leukocyte antigen (HLA) alleles might define an individual susceptibility to SARS-CoV-2 spreading, contributing to the differences in the distribution of the infection through different populations; additional studies suggested that the homolog of the HLA in cats, the feline leukocyte antigen (FLA), plays a pivotal role in the transmission of viruses. With these premises, this study aimed to exploit a bioinformatic approach for the prediction of the transmissibility potential of two distinct feline coronaviruses (FCoVs) in domestic cats (feline enteric coronavirus (FeCV) and feline infectious peritonitis virus (FIPV)) using SARS-CoV-2 as the reference model. We performed an epitope mapping of nonapeptides deriving from SARS-CoV-2, FeCV, and FIPV glycoproteins and predicted their affinities for different alleles included in the three main loci in class I FLAs (E, H, and K). The predicted complexes with the most promising affinities were then subjected to molecular docking and molecular dynamics simulations to provide insights into the stability and binding energies in the cleft. Results showed the FLA proteins encoded by alleles in the FLA-I H (H00501 and H00401) and E (E01001 and E00701) loci are largely responsive to several epitopes deriving from replicase and spike proteins of the analyzed coronaviruses. The analysis of the most affine epitope sequences resulting from the prediction can stimulate the development of anti-FCoV immunomodulatory strategies based on peptide drugs.
冠状病毒是对人类和动物具有高度传染性和致病性的病毒。在疫情期间收集的大量关于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的信息有助于揭示感染背后机制的细节,但这些细节在很大程度上仍然难以捉摸。最近的研究表明,不同的I/II类人类白细胞抗原(HLA)等位基因可能决定个体对SARS-CoV-2传播的易感性,导致该感染在不同人群中的分布存在差异;其他研究表明,猫体内HLA的同源物,即猫白细胞抗原(FLA),在病毒传播中起关键作用。基于这些前提,本研究旨在利用生物信息学方法,以SARS-CoV-2作为参考模型,预测两种不同的猫冠状病毒(FCoV)在家猫中的传播潜力(猫肠道冠状病毒(FeCV)和猫传染性腹膜炎病毒(FIPV))。我们对源自SARS-CoV-2、FeCV和FIPV糖蛋白的九肽进行了表位定位,并预测了它们与I类FLA三个主要位点(E、H和K)中不同等位基因的亲和力。然后,对具有最有前景亲和力的预测复合物进行分子对接和分子动力学模拟,以深入了解裂隙中的稳定性和结合能。结果表明,FLA-I H(H00501和H00401)和E(E01001和E00701)位点的等位基因编码的FLA蛋白对源自所分析冠状病毒的复制酶和刺突蛋白的多个表位有很大反应。对预测得到的最具亲和力的表位序列进行分析,可促进基于肽药物的抗FCoV免疫调节策略的开发。