Suppr超能文献

使用普通最小二乘法估计器对相关独立变量的近似不确定性传播

Approximated Uncertainty Propagation of Correlated Independent Variables Using the Ordinary Least Squares Estimator.

作者信息

Lim Jeong Sik, Kim Yong Doo, Woo Jin-Chun

机构信息

Strategic Technology Research Institute, Korea Research Institute of Standards and Science (KRISS), Gajeong-ro 267, Yuseong-gu, Daejeon 34113, Republic of Korea.

Science of Measurement, University of Science and Technology (UST), Gajeong-ro 217, Yuseong-gu, Daejeon 34113, Republic of Korea.

出版信息

Molecules. 2024 Mar 11;29(6):1248. doi: 10.3390/molecules29061248.

Abstract

For chemical measurements, calibration is typically conducted by regression analysis. In many cases, generalized approaches are required to account for a complex-structured variance-covariance matrix of (in)dependent variables. However, in the particular case of highly correlated independent variables, the ordinary least squares (OLS) method can play a rational role with an approximated propagation of uncertainties of the correlated independent variables into that of a calibrated value for a particular case in which standard deviation of fit residuals are close to the uncertainties along the ordinate of calibration data. This proposed method aids in bypassing an iterative solver for the minimization of the implicit form of the squared residuals. This further allows us to derive the explicit expression of budgeted uncertainties corresponding to a regression uncertainty, the measurement uncertainty of the calibration target, and correlated independent variables. Explicit analytical expressions for the calibrated value and associated uncertainties are given for straight-line and second-order polynomial fit models for the highly correlated independent variables.

摘要

对于化学测量,校准通常通过回归分析进行。在许多情况下,需要采用广义方法来处理(非)独立变量的复杂结构方差 - 协方差矩阵。然而,在高度相关的独立变量的特殊情况下,普通最小二乘法(OLS)可以发挥合理作用,将相关独立变量的不确定性近似传播到校准值的不确定性中,适用于拟合残差的标准偏差接近校准数据纵坐标上的不确定性的特定情况。该方法有助于绕过用于最小化平方残差隐式形式的迭代求解器。这进一步使我们能够推导出与回归不确定性、校准目标的测量不确定性以及相关独立变量相对应的预算不确定性的显式表达式。针对高度相关的独立变量的直线和二阶多项式拟合模型,给出了校准值及相关不确定性的显式解析表达式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e617/10975691/092fc9782862/molecules-29-01248-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验