Suppr超能文献

最小二乘法校准:处理 x 的不确定性。

Least squares in calibration: dealing with uncertainty in x.

机构信息

Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA.

出版信息

Analyst. 2010 Aug;135(8):1961-9. doi: 10.1039/c0an00192a. Epub 2010 Jun 24.

Abstract

The least-squares (LS) analysis of data with error in x and y is generally thought to yield best results when carried out by minimizing the "total variance" (TV), defined as the sum of the properly weighted squared residuals in x and y. Alternative "effective variance" (EV) methods project the uncertainty in x into an effective contribution to that in y, and though easier to employ are considered to be less reliable. In the case of a linear response function with both sigma(x) and sigma(y) constant, the EV solutions are identically those from ordinary LS; and Monte Carlo (MC) simulations reveal that they can actually yield smaller root-mean-square errors than the TV method. Furthermore, the biases can be predicted from theory based on inverse regression--x upon y when x is error-free and y is uncertain--which yields a bias factor proportional to the ratio sigma(x)(2)/sigma(xm)(2) of the random-error variance in x to the model variance. The MC simulations confirm that the biases are essentially independent of the error in y, hence correctable. With such bias corrections, the better performance of the EV method in estimating the parameters translates into better performance in estimating the unknown (x(0)) from measurements (y(0)) of its response. The predictability of the EV parameter biases extends also to heteroscedastic y data as long as sigma(x) remains constant, but the estimation of x(0) is not as good in this case. When both x and y are heteroscedastic, there is no known way to predict the biases. However, the MC simulations suggest that for proportional error in x, a geometric x-structure leads to small bias and comparable performance for the EV and TV methods.

摘要

当通过最小化“总方差”(TV)来进行 x 和 y 存在误差的数据的最小二乘(LS)分析时,通常认为可以获得最佳结果,TV 定义为 x 和 y 中适当加权平方残差的总和。替代的“有效方差”(EV)方法将 x 中的不确定性投影到对 y 的有效贡献中,虽然更容易使用,但被认为不太可靠。在线性响应函数的情况下,当 sigma(x)和 sigma(y)都为常数时,EV 解决方案与普通 LS 完全相同;并且蒙特卡罗(MC)模拟表明,它们实际上可以比 TV 方法产生更小的均方根误差。此外,可以根据基于逆回归的理论来预测偏差-当 x 无误差且 y 不确定时,x 到 y-这会产生一个与随机误差方差 sigma(x)(2)/sigma(xm)(2)成正比的偏差因子。MC 模拟证实,偏差基本上与 y 的误差无关,因此是可纠正的。通过这种偏差校正,EV 方法在估计参数方面的更好性能转化为从其响应的测量值(y(0))估计未知值(x(0))的更好性能。只要 sigma(x)保持不变,EV 参数偏差的可预测性也扩展到异方差 y 数据,但在这种情况下,x(0)的估计效果不佳。当 x 和 y 都是异方差时,没有已知的方法可以预测偏差。然而,MC 模拟表明,对于 x 的比例误差,几何 x 结构导致小的偏差和 EV 方法与 TV 方法的可比性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验