Zeng Qiaoling Charlene, Zhang Elizabeth, Tellinghuisen Joel
Firmenich, Inc, Plainsboro, NJ 08536, USA.
Analyst. 2008 Dec;133(12):1649-55. doi: 10.1039/b808667b. Epub 2008 Oct 28.
In a study of calibration with HPLC data for acetaldehyde-DNPH, we have collected replicate data (5-11 points each) for 33 samples spanning the range 0.0004-3 microg of detected analyte. Over most of this range, the data uncertainty is proportional to the signal, implying that weighted least squares is required to obtain the calibration function, since minimum-variance estimation requires weights inversely proportional to the data variance. When a variance function derived from an analysis of the replicate statistics is used to assign weights, w(i) = 1/sigma(i)(2), the resulting values of chi(2) for the calibration fit are too large by a factor of 400. This implies that the method error is dominated by sample preparation rather than measurement uncertainty, and it means that in the calibration fit, the peak area should be taken as the independent variable and the amount as the dependent. In this reversed regression, the generalized LS method (GLS) is used to estimate the total method variance function from the residuals. The resulting method variance function resembles the instrumental variance, in containing constant and proportional error terms. The calibration data demand at least a cubic polynomial for adequate representation, but other response functions are statistically equivalent, with the result that this model uncertainty is comparable to the directly computed statistical uncertainty of the calibration function. In these computations, emphasis is placed on the virtues of chi(2) as a statistical figure of merit over the widely used R.
在一项针对乙醛 - 2,4 - 二硝基苯腙的高效液相色谱(HPLC)数据校准研究中,我们收集了33个样品的重复数据(每个样品5 - 11个点),检测到的分析物含量范围为0.0004 - 3微克。在这个范围的大部分区间内,数据不确定性与信号成正比,这意味着需要采用加权最小二乘法来获得校准函数,因为最小方差估计要求权重与数据方差成反比。当使用从重复统计分析得出的方差函数来分配权重,即w(i) = 1/σ(i)²时,校准拟合得到的χ²值比实际值大400倍。这表明方法误差主要由样品制备而非测量不确定度主导,这意味着在校准拟合中,应将峰面积作为自变量,含量作为因变量。在这种反向回归中,使用广义最小二乘法(GLS)从残差估计总方法方差函数。得到的方法方差函数类似于仪器方差,包含常数和比例误差项。校准数据至少需要一个三次多项式才能得到充分表示,但其他响应函数在统计上是等效的,结果是这种模型不确定度与校准函数直接计算的统计不确定度相当。在这些计算中,强调了χ²作为统计优值相对于广泛使用的R的优点。