Suppr超能文献

基于图神经网络的药物重定位:通过分子对接和生物学验证从 FDA 批准药物中鉴定新型 JAK2 抑制剂。

Drug Repositioning via Graph Neural Networks: Identifying Novel JAK2 Inhibitors from FDA-Approved Drugs through Molecular Docking and Biological Validation.

机构信息

Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea.

Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea.

出版信息

Molecules. 2024 Mar 19;29(6):1363. doi: 10.3390/molecules29061363.

Abstract

The increasing utilization of artificial intelligence algorithms in drug development has proven to be highly efficient and effective. One area where deep learning-based approaches have made significant contributions is in drug repositioning, enabling the identification of new therapeutic applications for existing drugs. In the present study, a trained deep-learning model was employed to screen a library of FDA-approved drugs to discover novel inhibitors targeting JAK2. To accomplish this, reference datasets containing active and decoy compounds specific to JAK2 were obtained from the DUD-E database. RDKit, a cheminformatic toolkit, was utilized to extract molecular features from the compounds. The DeepChem framework's GraphConvMol, based on graph convolutional network models, was applied to build a predictive model using the DUD-E datasets. Subsequently, the trained deep-learning model was used to predict the JAK2 inhibitory potential of FDA-approved drugs. Based on these predictions, ribociclib, topiroxostat, amodiaquine, and gefitinib were identified as potential JAK2 inhibitors. Notably, several known JAK2 inhibitors demonstrated high potential according to the prediction results, validating the reliability of our prediction model. To further validate these findings and confirm their JAK2 inhibitory activity, molecular docking experiments were conducted using tofacitinib-an FDA-approved drug for JAK2 inhibition. Experimental validation successfully confirmed our computational analysis results by demonstrating that these novel drugs exhibited comparable inhibitory activity against JAK2 compared to tofacitinib. In conclusion, our study highlights how deep learning models can significantly enhance virtual screening efforts in drug discovery by efficiently identifying potential candidates for specific targets such as JAK2. These newly discovered drugs hold promises as novel JAK2 inhibitors deserving further exploration and investigation.

摘要

人工智能算法在药物研发中的应用日益增多,已被证明是高效和有效的。深度学习方法在药物重定位方面做出了重大贡献,使我们能够发现现有药物的新治疗用途。在本研究中,我们使用经过训练的深度学习模型对 FDA 批准药物库进行筛选,以发现针对 JAK2 的新型抑制剂。为此,我们从 DUD-E 数据库中获得了包含针对 JAK2 的活性和诱饵化合物的参考数据集。我们使用 cheminformatic 工具包 RDKit 从化合物中提取分子特征。然后,我们应用 DeepChem 框架中的 GraphConvMol(基于图卷积网络模型)使用 DUD-E 数据集构建预测模型。随后,我们使用训练好的深度学习模型来预测 FDA 批准药物对 JAK2 的抑制潜力。基于这些预测,我们发现了来曲唑、托匹司他、阿莫地喹和吉非替尼可能是 JAK2 的抑制剂。值得注意的是,根据预测结果,几种已知的 JAK2 抑制剂显示出很高的潜力,验证了我们的预测模型的可靠性。为了进一步验证这些发现并确认它们对 JAK2 的抑制活性,我们使用已获 FDA 批准用于 JAK2 抑制的托法替尼进行了分子对接实验。实验验证成功地证实了我们的计算分析结果,表明这些新型药物对 JAK2 的抑制活性与托法替尼相当。总之,我们的研究强调了深度学习模型如何通过有效地识别针对特定靶标的潜在候选药物,显著增强药物发现中的虚拟筛选工作。这些新发现的药物有望成为新型 JAK2 抑制剂,值得进一步探索和研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e12/10974395/59a3f53d82df/molecules-29-01363-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验