Suppr超能文献

基于深度神经网络框架 SSnet、经典虚拟筛选和对接技术对 SARS-COV-2 潜在药物进行深入药物数据库筛选预测。

Predicting Potential SARS-COV-2 Drugs-In Depth Drug Database Screening Using Deep Neural Network Framework SSnet, Classical Virtual Screening and Docking.

机构信息

Department of Chemistry, Southern Methodist University, Dallas, TX 75205, USA.

出版信息

Int J Mol Sci. 2021 Feb 4;22(4):1573. doi: 10.3390/ijms22041573.

Abstract

Severe Acute Respiratory Syndrome Corona Virus 2 has altered life on a global scale. A concerted effort from research labs around the world resulted in the identification of potential pharmaceutical treatments for CoVID-19 using existing drugs, as well as the discovery of multiple vaccines. During an urgent crisis, rapidly identifying potential new treatments requires global and cross-discipline cooperation, together with an enhanced open-access research model to distribute new ideas and leads. Herein, we introduce an application of a deep neural network based drug screening method, validating it using a docking algorithm on approved drugs for drug repurposing efforts, and extending the screen to a large library of 750,000 compounds for de novo drug discovery effort. The results of large library screens are incorporated into an open-access web interface to allow researchers from diverse fields to target molecules of interest. Our combined approach allows for both the identification of existing drugs that may be able to be repurposed and de novo design of ACE2-regulatory compounds. Through these efforts we demonstrate the utility of a new machine learning algorithm for drug discovery, SSnet, that can function as a tool to triage large molecular libraries to identify classes of molecules with possible efficacy.

摘要

严重急性呼吸系统综合症冠状病毒 2 已经在全球范围内改变了人们的生活。来自世界各地的研究实验室的共同努力,利用现有药物为 CoVID-19 确定了潜在的药物治疗方法,并发现了多种疫苗。在紧急危机中,快速识别潜在的新治疗方法需要全球和跨学科的合作,以及增强开放获取的研究模式,以传播新思想和线索。在这里,我们介绍了一种基于深度神经网络的药物筛选方法的应用,该方法使用对接算法对已批准药物进行药物重定位,从而验证了该方法的有效性,并将筛选范围扩展到一个包含 75 万种化合物的大型化合物库,用于从头开始的药物发现工作。大型文库筛选的结果被纳入到一个开放获取的网络界面中,以便来自不同领域的研究人员能够针对感兴趣的分子。我们的综合方法既可以识别可能重新定位的现有药物,也可以设计 ACE2 调节化合物。通过这些努力,我们展示了一种新的机器学习算法 SSnet 在药物发现中的应用,它可以作为一种工具,对大型分子文库进行分类,以识别可能具有疗效的分子类别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d508/7915186/c6e1cb7503e4/ijms-22-01573-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验