Suppr超能文献

用于光电和太阳能电池应用的聚偏氟乙烯/钛酸锶/碳纳米管纳米复合材料的结构-性能关系

Structure-Property Relationships in PVDF/SrTiO/CNT Nanocomposites for Optoelectronic and Solar Cell Applications.

作者信息

Taha Taha Abdel Mohaymen, Alanazi Sultan Saud, El-Nasser Karam S, Alshammari Alhulw H, Ismael Ali

机构信息

Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia.

Department of Chemistry, College of Science and Arts, Jouf University, Sakaka 72388, Saudi Arabia.

出版信息

Polymers (Basel). 2024 Mar 7;16(6):736. doi: 10.3390/polym16060736.

Abstract

The optical properties of polyvinylidene fluoride (PVDF) polymer nanocomposite films incorporating SrTiO/carbon nanotubes (CNTs) as nanofillers are investigated. PVDF/SrTiO/CNTs films were prepared by the solution casting technique. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analyses confirmed the incorporation of SrTiO/CNTs into the PVDF matrix. The addition of nanofillers influenced the crystalline structure, morphology, and optical properties of the films. SEM images showed spherulite morphology, which is a spherical aggregate of crystalline polymer chains. The addition of a SrTiO/CNTs nanofiller modified the polymer's electronic structure, causing a variation in the energy gap. The addition of SrTiO/CNTs at 0.1 wt% increased the band gap, refractive index, and nonlinear optical properties of the PVDF films. These improvements indicate the potential of these nanocomposite films in optoelectronic applications such as solar cells, image sensors, and organic light-emitting diodes.

摘要

研究了以钛酸锶/碳纳米管(CNTs)作为纳米填料的聚偏氟乙烯(PVDF)聚合物纳米复合薄膜的光学性质。采用溶液浇铸技术制备了PVDF/钛酸锶/碳纳米管薄膜。X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)分析证实了钛酸锶/碳纳米管已掺入PVDF基体中。纳米填料的添加影响了薄膜的晶体结构、形态和光学性质。SEM图像显示出球晶形态,这是结晶聚合物链的球形聚集体。钛酸锶/碳纳米管纳米填料的添加改变了聚合物的电子结构,导致能隙发生变化。添加0.1 wt%的钛酸锶/碳纳米管提高了PVDF薄膜的带隙、折射率和非线性光学性质。这些改进表明这些纳米复合薄膜在太阳能电池、图像传感器和有机发光二极管等光电子应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8116/10974231/40af6c692cdf/polymers-16-00736-g001.jpg

相似文献

2
Structural, Optical, and Thermal Properties of PVA/SrTiO/CNT Polymer Nanocomposites.
Polymers (Basel). 2024 May 14;16(10):1392. doi: 10.3390/polym16101392.
3
Amplified Dielectric Properties of PVDF-HFP/SrTiO Nanocomposites for a Flexible Film Capacitor.
Langmuir. 2023 Sep 19;39(37):13345-13358. doi: 10.1021/acs.langmuir.3c02055. Epub 2023 Sep 7.
4
Preparation and Optical Properties of PVDF-CaFeO Polymer Nanocomposite Films.
Polymers (Basel). 2023 May 8;15(9):2232. doi: 10.3390/polym15092232.
7
New Hybrid PVC/PVP Polymer Blend Modified with ErO Nanoparticles for Optoelectronic Applications.
Polymers (Basel). 2023 Jan 29;15(3):684. doi: 10.3390/polym15030684.
10
GO based PVA nanocomposites: tailoring of optical and structural properties of PVA with low percentage of GO nanofillers.
Heliyon. 2021 May 7;7(5):e06983. doi: 10.1016/j.heliyon.2021.e06983. eCollection 2021 May.

引用本文的文献

1
Engineering Stable Cu-Doped SrTiO Perovskites for Enhanced Photocatalytic CO Reduction.
Inorg Chem. 2025 Aug 4;64(30):15370-15380. doi: 10.1021/acs.inorgchem.5c00796. Epub 2025 Jul 21.
2
Nano-Enhanced Polymer Composite Materials: A Review of Current Advancements and Challenges.
Polymers (Basel). 2025 Mar 26;17(7):893. doi: 10.3390/polym17070893.
4
Structural, Optical, and Thermal Properties of PVA/SrTiO/CNT Polymer Nanocomposites.
Polymers (Basel). 2024 May 14;16(10):1392. doi: 10.3390/polym16101392.

本文引用的文献

1
Preparation and Optical Properties of PVDF-CaFeO Polymer Nanocomposite Films.
Polymers (Basel). 2023 May 8;15(9):2232. doi: 10.3390/polym15092232.
2
Structural and Optical Characterization of g-CN Nanosheet Integrated PVC/PVP Polymer Nanocomposites.
Polymers (Basel). 2023 Feb 9;15(4):871. doi: 10.3390/polym15040871.
4
Interphase in Polymer Nanocomposites.
JACS Au. 2022 Jan 13;2(2):280-291. doi: 10.1021/jacsau.1c00430. eCollection 2022 Feb 28.
5
Polymeric Nanocomposites for Environmental and Industrial Applications.
Int J Mol Sci. 2022 Jan 18;23(3):1023. doi: 10.3390/ijms23031023.
6
Polymer thin films as universal substrates for extreme ultraviolet absorption spectroscopy of molecular transition metal complexes.
J Synchrotron Radiat. 2021 Nov 1;28(Pt 6):1850-1857. doi: 10.1107/S1600577521010596. Epub 2021 Oct 22.
7
Enhancing the Refractive Index of Polymers with a Plant-Based Pigment.
Small. 2021 Nov;17(44):e2103061. doi: 10.1002/smll.202103061. Epub 2021 Sep 23.
8
Machine Learning Aided Design of Polymer with Targeted Band Gap Based on DFT Computation.
J Phys Chem B. 2021 Jan 21;125(2):601-611. doi: 10.1021/acs.jpcb.0c08674. Epub 2021 Jan 7.
9
Tight binding models accurately predict band structures for copolymer semiconductors.
Phys Chem Chem Phys. 2020 Sep 21;22(35):19659-19671. doi: 10.1039/d0cp01833c. Epub 2020 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验