Huang Ting, Carrizo Daniel, Sánchez-García Laura, Hu Qitao, Anglés Angélica, Gómez-Ortiz David, Yu Liang-Liang, Fernández-Remolar David C
SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China.
CNSA Macau Center for Space Exploration and Science, Macau 999078, China.
Microorganisms. 2024 Mar 2;12(3):513. doi: 10.3390/microorganisms12030513.
The process of soil genesis unfolds as pioneering microbial communities colonize mineral substrates, enriching them with biomolecules released from bedrock. The resultant intricate surface units emerge from a complex interplay among microbiota and plant communities. Under these conditions, host rocks undergo initial weathering through microbial activity, rendering them far from pristine and challenging the quest for biomarkers in ancient sedimentary rocks. In addressing this challenge, a comprehensive analysis utilizing Gas Chromatography Mass Spectrometry (GC-MS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) was conducted on a 520-Ma-old Cambrian rock. This investigation revealed a diverse molecular assemblage with comprising alkanols, sterols, fatty acids, glycerolipids, wax esters, and nitrogen-bearing compounds. Notably, elevated levels of bacterial C, C and C fatty acids, iso and anteiso methyl-branched fatty acids, as well as fungal sterols, long-chained fatty acids, and alcohols, consistently align with a consortium of bacteria and fungi accessing complex organic matter within a soil-type ecosystem. The prominence of bacterial and fungal lipids alongside maturity indicators denotes derivation from heterotrophic activity rather than ancient preservation or marine sources. Moreover, the identification of long-chain (>C22) n-alkanols, even-carbon-numbered long chain (>C20) fatty acids, and campesterol, as well as stigmastanol, provides confirmation of plant residue inputs. Furthermore, findings highlight the ability of contemporary soil microbiota to inhabit rocky substrates actively, requiring strict contamination controls when evaluating ancient molecular biosignatures or extraterrestrial materials collected.
土壤形成过程随着先锋微生物群落定殖于矿物基质而展开,这些微生物群落用从基岩释放的生物分子丰富了矿物基质。由此产生的复杂表面单元源自微生物群和植物群落之间的复杂相互作用。在这些条件下,宿主岩石通过微生物活动经历初始风化,使其远非原始状态,并对在古代沉积岩中寻找生物标志物提出了挑战。为应对这一挑战,对一块5.2亿年前的寒武纪岩石进行了利用气相色谱 - 质谱联用仪(GC-MS)和飞行时间二次离子质谱仪(ToF-SIMS)的综合分析。这项研究揭示了一个多样的分子组合,包括链烷醇、甾醇、脂肪酸、甘油脂、蜡酯和含氮化合物。值得注意的是,细菌C、C和C脂肪酸、异甲基和反异甲基支链脂肪酸以及真菌甾醇、长链脂肪酸和醇的含量升高,始终与在土壤型生态系统中获取复杂有机物的细菌和真菌联合体一致。细菌和真菌脂质与成熟度指标的突出表明其源自异养活动,而非古老保存或海洋来源。此外,长链(>C22)正链烷醇、偶数碳数长链(>C20)脂肪酸、菜油甾醇以及豆甾烷醇的鉴定证实了植物残体的输入。此外,研究结果突出了当代土壤微生物群积极栖息于岩石基质的能力,在评估古代分子生物标志或收集的外星物质时需要严格控制污染。