Park Haewook, Kim Juhyun, Cho Sungwon, Kim Kyunghyun, Jang Sungho, Choi Younsok, Lee Hohyun
Mechatronics Research, Samsung Electronics Co., Ltd., 1-1, Samsungjeonja-ro, Hwaseong-si 18448, Gyeonggi-do, Republic of Korea.
Sensors (Basel). 2024 Mar 10;24(6):1786. doi: 10.3390/s24061786.
In this work, we propose our newly developed wafer-type plasma monitoring sensor based on a floating-type double probe method that can be useful for two-dimensional (2D) in situ plasma diagnosis within a semiconductor processing chamber. A key achievement of this work is the first realization of an ultra-thin plasma monitoring sensor with a system thickness of ~1.4 mm, which supports a fully automated robot arm transfer capability for in situ plasma diagnosis. To the best of our knowledge, it is the thinnest accomplishment among all wafer-type plasma monitoring sensors. Our proposed sensor is assembled with two Si wafers and SiO-based probes; accordingly, it makes it possible to monitor the actual dynamics of processing plasmas under electrostatic chucking (ESC) conditions. Also, it allows for the prevention of chamber contamination issues after continuously exposing the radio frequency (RF) to various processing gases. Using a test-bed chamber, we successfully demonstrated the feasibility and system performance of the proposed sensor, including robot arm transfer capability, vacuum and thermal stress durability, and data integrity and reproducibility. Consequently, compared with the conventional plasma diagnostic tools, we expect that our proposed sensor will be highly beneficial for tool-to-tool matching (TTTM) and/or for studying various plasma-related items by more accurately providing the parameters of processing plasmas, further saving both time and manpower resources required for preventive maintenance (PM) routines as well.
在这项工作中,我们提出了一种新开发的基于浮动式双探针法的晶圆型等离子体监测传感器,该传感器可用于半导体处理腔内的二维(2D)原位等离子体诊断。这项工作的一个关键成果是首次实现了系统厚度约为1.4毫米的超薄等离子体监测传感器,它支持用于原位等离子体诊断的全自动机器人手臂转移能力。据我们所知,这是所有晶圆型等离子体监测传感器中最薄的成果。我们提出的传感器由两个硅晶圆和基于SiO的探针组装而成;因此,它能够在静电吸盘(ESC)条件下监测处理等离子体的实际动态。此外,在将射频连续暴露于各种处理气体后,它还能防止腔室污染问题。使用试验台腔室,我们成功展示了所提出传感器的可行性和系统性能,包括机器人手臂转移能力、真空和热应力耐久性以及数据完整性和可重复性。因此,与传统的等离子体诊断工具相比,我们预计我们提出的传感器对于工具间匹配(TTTM)和/或通过更准确地提供处理等离子体的参数来研究各种与等离子体相关的项目将非常有益,还能进一步节省预防性维护(PM)程序所需的时间和人力资源。