Suppr超能文献

基于跨卷积神经网络的毫米波雷达手势识别

TRANS-CNN-Based Gesture Recognition for mmWave Radar.

作者信息

Zhang Huafeng, Liu Kang, Zhang Yuanhui, Lin Jihong

机构信息

College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2024 Mar 11;24(6):1800. doi: 10.3390/s24061800.

Abstract

In order to improve the real-time performance of gesture recognition by a micro-Doppler map of mmWave radar, the point cloud based gesture recognition for mmWave radar is proposed in this paper. Two steps are carried out for mmWave radar-based gesture recognition. The first step is to estimate the point cloud of the gestures by 3D-FFT and the peak grouping. The second step is to train the TRANS-CNN model by combining the multi-head self-attention and the 1D-convolutional network so as to extract the features in the point cloud data at a deeper level to categorize the gestures. In the experiments, TI mmWave radar sensor IWR1642 is used as a benchmark to evaluate the feasibility of the proposed approach. The results show that the accuracy of the gesture recognition reaches 98.5%. In order to prove the effectiveness of our approach, a simply 2Tx2Rx radar sensor is developed in our lab, and the accuracy of recognition reaches 97.1%. The results show that our proposed gesture recognition approach achieves the best performance in real time with limited training data in comparison with the existing methods.

摘要

为了提高基于毫米波雷达微多普勒图的手势识别实时性能,本文提出了基于点云的毫米波雷达手势识别方法。基于毫米波雷达的手势识别分两步进行。第一步是通过三维快速傅里叶变换(3D-FFT)和峰值分组估计手势的点云。第二步是通过结合多头自注意力和一维卷积网络训练TRANS-CNN模型,以便在更深层次上提取点云数据中的特征对手势进行分类。在实验中,采用德州仪器(TI)毫米波雷达传感器IWR1642作为基准来评估所提方法的可行性。结果表明,手势识别准确率达到98.5%。为了证明我们方法的有效性,我们实验室开发了一种简单的2发2收雷达传感器,识别准确率达到97.1%。结果表明,与现有方法相比,我们提出的手势识别方法在有限训练数据的情况下实时性能最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef98/10974769/c09e0abec0d9/sensors-24-01800-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验