Suppr超能文献

基于深度学习的飞行员操作低温安全阀的预测与健康管理模型。

Deep Learning-Based Prognostics and Health Management Model for Pilot-Operated Cryogenic Safety Valves.

机构信息

Department of Computer and Information Engineering, Catholic University of Pusan, Busan 46252, Republic of Korea.

DH Controls Co., Ltd., Busan 46747, Republic of Korea.

出版信息

Sensors (Basel). 2024 Mar 12;24(6):1814. doi: 10.3390/s24061814.

Abstract

This paper highlights the significance of safety and reliability in modern industries, particularly in sectors like petroleum and LNG, where safety valves play a critical role in ensuring system safety under extreme conditions. To enhance the reliability of these valves, this study aims to develop a deep learning-based prognostics and health management (PHM) model. Past empirical methods have limitations, driving the need for data-driven prediction models. The proposed model monitors safety valve performance, detects anomalies in real time, and prevents accidents caused by system failures. The research focuses on collecting sensor data, analyzing trends for lifespan prediction and normal operation, and integrating data for anomaly detection. This study compares related research and existing models, presents detailed results, and discusses future research directions. Ultimately, this research contributes to the safe operation and anomaly detection of pilot-operated cryogenic safety valves in industrial settings.

摘要

本文强调了安全可靠性在现代工业中的重要性,特别是在石油和液化天然气等领域,安全阀在极端条件下确保系统安全方面发挥着关键作用。为了提高这些阀门的可靠性,本研究旨在开发基于深度学习的预测和健康管理 (PHM) 模型。过去的经验方法存在局限性,因此需要数据驱动的预测模型。所提出的模型监测安全阀性能,实时检测异常情况,并防止因系统故障导致的事故。该研究侧重于收集传感器数据,分析寿命预测和正常运行的趋势,并整合数据进行异常检测。本研究比较了相关研究和现有模型,给出了详细的结果,并讨论了未来的研究方向。最终,本研究有助于在工业环境中安全运行和检测先导式低温安全阀的异常情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dc/10975573/52faa8db7ed4/sensors-24-01814-g001.jpg

相似文献

7
Prognostics and Health Management of Industrial Assets: Current Progress and Road Ahead.
Front Artif Intell. 2020 Nov 9;3:578613. doi: 10.3389/frai.2020.578613. eCollection 2020.
8
Prognostic and Health Management of Critical Aircraft Systems and Components: An Overview.
Sensors (Basel). 2023 Sep 27;23(19):8124. doi: 10.3390/s23198124.
10
Sensor systems for prognostics and health management.
Sensors (Basel). 2010;10(6):5774-97. doi: 10.3390/s100605774. Epub 2010 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验