Suppr超能文献

工业资产的预测与健康管理:当前进展与未来之路

Prognostics and Health Management of Industrial Assets: Current Progress and Road Ahead.

作者信息

Biggio Luca, Kastanis Iason

机构信息

Data Analytics Lab, Institute of Machine Learning, Department of Computer Science, ETHZ: Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland.

Robotics and Automation, CSEM SA: Swiss Center for Electronics and Microtechnology S.A., Alpnach, Switzerland.

出版信息

Front Artif Intell. 2020 Nov 9;3:578613. doi: 10.3389/frai.2020.578613. eCollection 2020.

Abstract

Prognostic and Health Management (PHM) systems are some of the main protagonists of the Industry 4.0 revolution. Efficiently detecting whether an industrial component has deviated from its normal operating condition or predicting when a fault will occur are the main challenges these systems aim at addressing. Efficient PHM methods promise to decrease the probability of extreme failure events, thus improving the safety level of industrial machines. Furthermore, they could potentially drastically reduce the often conspicuous costs associated with scheduled maintenance operations. The increasing availability of data and the stunning progress of Machine Learning (ML) and Deep Learning (DL) techniques over the last decade represent two strong motivating factors for the development of data-driven PHM systems. On the other hand, the black-box nature of DL models significantly hinders their level of interpretability, limiting their application to real-world scenarios. In this work, we explore the intersection of Artificial Intelligence (AI) methods and PHM applications. We present a thorough review of existing works both in the contexts of fault diagnosis and fault prognosis, highlighting the benefits and the drawbacks introduced by the adoption of AI techniques. Our goal is to highlight potentially fruitful research directions along with characterizing the main challenges that need to be addressed in order to realize the promises of AI-based PHM systems.

摘要

预测与健康管理(PHM)系统是工业4.0革命的一些主要推动者。有效检测工业部件是否偏离其正常运行状态或预测故障何时会发生是这些系统旨在解决的主要挑战。高效的PHM方法有望降低极端故障事件的概率,从而提高工业机器的安全水平。此外,它们还可能大幅降低与定期维护操作相关的通常很显著的成本。在过去十年中,数据可用性的不断提高以及机器学习(ML)和深度学习(DL)技术的惊人进展是数据驱动的PHM系统发展的两个强大推动因素。另一方面,DL模型的黑箱性质严重阻碍了它们的可解释性水平,限制了它们在现实世界场景中的应用。在这项工作中,我们探索人工智能(AI)方法与PHM应用的交叉点。我们对故障诊断和故障预测背景下的现有工作进行了全面回顾,突出了采用AI技术带来的优点和缺点。我们的目标是突出潜在富有成效的研究方向,并描述为实现基于AI的PHM系统的前景而需要解决的主要挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14f9/7861342/16c570a22127/frai-03-578613-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验