Suppr超能文献

大数据预处理方法在预测与健康管理中数据驱动模型的应用

Big Machinery Data Preprocessing Methodology for Data-Driven Models in Prognostics and Health Management.

机构信息

Center for Risk and Reliability, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.

Department of Civil and Environmental Engineering, Garrick Institute for the Risk Sciences, University of California, Los Angeles, CA 90095, USA.

出版信息

Sensors (Basel). 2021 Oct 14;21(20):6841. doi: 10.3390/s21206841.

Abstract

Sensor monitoring networks and advances in big data analytics have guided the reliability engineering landscape to a new era of big machinery data. Low-cost sensors, along with the evolution of the internet of things and industry 4.0, have resulted in rich databases that can be analyzed through prognostics and health management (PHM) frameworks. Several data-driven models (DDMs) have been proposed and applied for diagnostics and prognostics purposes in complex systems. However, many of these models are developed using simulated or experimental data sets, and there is still a knowledge gap for applications in real operating systems. Furthermore, little attention has been given to the required data preprocessing steps compared to the training processes of these DDMs. Up to date, research works do not follow a formal and consistent data preprocessing guideline for PHM applications. This paper presents a comprehensive step-by-step pipeline for the preprocessing of monitoring data from complex systems aimed for DDMs. The importance of expert knowledge is discussed in the context of data selection and label generation. Two case studies are presented for validation, with the end goal of creating clean data sets with healthy and unhealthy labels that are then used to train machinery health state classifiers.

摘要

传感器监测网络和大数据分析的进步将可靠性工程领域带入了一个新的大型机械设备数据时代。低成本传感器,以及物联网和工业 4.0 的发展,产生了丰富的数据库,可以通过预测和健康管理 (PHM) 框架进行分析。已经提出并应用了几种数据驱动模型 (DDM) 用于复杂系统的诊断和预测目的。然而,许多这些模型都是使用模拟或实验数据集开发的,并且在实际操作系统中的应用仍然存在知识差距。此外,与这些 DDM 的训练过程相比,对所需的数据预处理步骤的关注较少。迄今为止,研究工作没有为 PHM 应用遵循正式和一致的数据预处理指南。本文提出了一种针对 DDM 的复杂系统监测数据预处理的综合逐步管道。在数据选择和标签生成的背景下讨论了专家知识的重要性。提出了两个案例研究进行验证,最终目标是创建带有健康和不健康标签的清洁数据集,然后使用这些数据集来训练机械健康状态分类器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/182c/8537368/c01c651b753d/sensors-21-06841-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验