Bi Xiaodan, Zhao Lian
Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
Sensors (Basel). 2024 Mar 14;24(6):1863. doi: 10.3390/s24061863.
With the exponential growth of wireless devices and the demand for real-time processing, traditional server architectures face challenges in meeting the ever-increasing computational requirements. This paper proposes a collaborative edge computing framework to offload and process tasks efficiently in such environments. By equipping a moving unmanned aerial vehicle (UAV) as the mobile edge computing (MEC) server, the proposed architecture aims to release the burden on roadside units (RSUs) servers. Specifically, we propose a two-layer edge intelligence scheme to allocate network computing resources. The first layer intelligently offloads and allocates tasks generated by wireless devices in the vehicular system, and the second layer utilizes the partially observable stochastic game (POSG), solved by duelling deep Q-learning, to allocate the computing resources of each processing node (PN) to different tasks. Meanwhile, we propose a weighted position optimization algorithm for the UAV movement in the system to facilitate task offloading and task processing. Simulation results demonstrate the improved performance by applying the proposed scheme.
随着无线设备的指数级增长以及对实时处理的需求,传统服务器架构在满足不断增长的计算需求方面面临挑战。本文提出了一种协作式边缘计算框架,以便在这样的环境中高效地卸载和处理任务。通过将移动无人驾驶飞行器(UAV)配备为移动边缘计算(MEC)服务器,所提出的架构旨在减轻路边单元(RSU)服务器的负担。具体而言,我们提出了一种两层边缘智能方案来分配网络计算资源。第一层智能地卸载并分配车辆系统中无线设备生成的任务,第二层利用通过决斗深度Q学习解决的部分可观测随机博弈(POSG),将每个处理节点(PN)的计算资源分配给不同的任务。同时,我们为系统中的无人机运动提出了一种加权位置优化算法,以促进任务卸载和任务处理。仿真结果证明了应用所提出的方案后性能得到了提升。