Suppr超能文献

基于现场可编程门阵列(FPGA)器件的片上网络受限库仑能量神经网络加速器设计

Design of Network-on-Chip-Based Restricted Coulomb Energy Neural Network Accelerator on FPGA Device.

作者信息

Kang Soongyu, Lee Seongjoo, Jung Yunho

机构信息

School of Electronics and Information Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea.

Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea.

出版信息

Sensors (Basel). 2024 Mar 15;24(6):1891. doi: 10.3390/s24061891.

Abstract

Sensor applications in internet of things (IoT) systems, coupled with artificial intelligence (AI) technology, are becoming an increasingly significant part of modern life. For low-latency AI computation in IoT systems, there is a growing preference for edge-based computing over cloud-based alternatives. The restricted coulomb energy neural network (RCE-NN) is a machine learning algorithm well-suited for implementation on edge devices due to its simple learning and recognition scheme. In addition, because the RCE-NN generates neurons as needed, it is easy to adjust the network structure and learn additional data. Therefore, the RCE-NN can provide edge-based real-time processing for various sensor applications. However, previous RCE-NN accelerators have limited scalability when the number of neurons increases. In this paper, we propose a network-on-chip (NoC)-based RCE-NN accelerator and present the results of implementation on a field-programmable gate array (FPGA). NoC is an effective solution for managing massive interconnections. The proposed RCE-NN accelerator utilizes a hierarchical-star (H-star) topology, which efficiently handles a large number of neurons, along with routers specifically designed for the RCE-NN. These approaches result in only a slight decrease in the maximum operating frequency as the number of neurons increases. Consequently, the maximum operating frequency of the proposed RCE-NN accelerator with 512 neurons increased by 126.1% compared to a previous RCE-NN accelerator. This enhancement was verified with two datasets for gas and sign language recognition, achieving accelerations of up to 54.8% in learning time and up to 45.7% in recognition time. The NoC scheme of the proposed RCE-NN accelerator is an appropriate solution to ensure the scalability of the neural network while providing high-performance on-chip learning and recognition.

摘要

物联网(IoT)系统中的传感器应用,再加上人工智能(AI)技术,正日益成为现代生活中重要的一部分。对于物联网系统中的低延迟AI计算,相较于基于云的替代方案,人们越来越倾向于基于边缘的计算。受限库仑能量神经网络(RCE-NN)是一种机器学习算法,由于其简单的学习和识别方案,非常适合在边缘设备上实现。此外,由于RCE-NN按需生成神经元,因此易于调整网络结构并学习额外的数据。因此,RCE-NN可以为各种传感器应用提供基于边缘的实时处理。然而,当神经元数量增加时,先前的RCE-NN加速器扩展性有限。在本文中,我们提出了一种基于片上网络(NoC)的RCE-NN加速器,并展示了在现场可编程门阵列(FPGA)上的实现结果。NoC是管理大量互连的有效解决方案。所提出的RCE-NN加速器采用分层星型(H-star)拓扑结构,能够有效地处理大量神经元,同时还配备了专门为RCE-NN设计的路由器。随着神经元数量的增加,这些方法只会使最大工作频率略有下降。因此,与先前的RCE-NN加速器相比,具有512个神经元的所提出的RCE-NN加速器的最大工作频率提高了126.1%。通过用于气体和手语识别的两个数据集验证了这种增强效果,在学习时间上实现了高达54.8%的加速,在识别时间上实现了高达45.7%的加速。所提出的RCE-NN加速器的NoC方案是一种合适的解决方案,可确保神经网络的可扩展性,同时提供高性能的片上学习和识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验