Suppr超能文献

表面肌电图数据分析评估室内划船运动员和非运动员的体育锻炼习惯。

Surface Electromyography Data Analysis for Evaluation of Physical Exercise Habits between Athletes and Non-Athletes during Indoor Rowing.

机构信息

Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland.

EGZOTech Sp. z o.o., 44-100 Gliwice, Poland.

出版信息

Sensors (Basel). 2024 Mar 19;24(6):1964. doi: 10.3390/s24061964.

Abstract

In this paper, surface electromyography (sEMG) is used to gather the activation neural signal from muscles during an indoor rowing exercise. The exercise was performed by professional athletes and amateur non-athletes. The data acquisition and processing are described to obtain a set of parameters: number of cycles, average cycle time, cycle time standard deviation, fatigue time, muscle activation time, and muscle energy. These parameters are used to draw conclusions on common non-athletes' mistakes during exercise for better training advice and a way of statistically distinguishing an athlete from a non-athlete.

摘要

本文利用表面肌电图(sEMG)来采集室内划船运动中肌肉的神经激活信号。该运动由专业运动员和业余非运动员完成。本文对数据采集和处理过程进行了描述,以获得一组参数:运动周期数、平均运动周期时间、运动周期时间标准差、疲劳时间、肌肉激活时间和肌肉能量。这些参数可用于得出关于普通非运动员在运动中常见错误的结论,从而为更好的训练建议和统计区分运动员与非运动员提供一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8974/10975868/7ef3334b2134/sensors-24-01964-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验