基于标记和惯性测量单元的解决方案在康复中的实时肌肉骨骼运动学和动力学分析。

Real-Time Musculoskeletal Kinematics and Dynamics Analysis Using Marker- and IMU-Based Solutions in Rehabilitation.

机构信息

Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1018 Lausanne, Switzerland.

Department of Electrical and Computer Engineering, University of Patras, 26504 Patras, Greece.

出版信息

Sensors (Basel). 2021 Mar 5;21(5):1804. doi: 10.3390/s21051804.

Abstract

This study aims to explore the possibility of estimating a multitude of kinematic and dynamic quantities using subject-specific musculoskeletal models in real-time. The framework was designed to operate with marker-based and inertial measurement units enabling extensions far beyond dedicated motion capture laboratories. We present the technical details for calculating the kinematics, generalized forces, muscle forces, joint reaction loads, and predicting ground reaction wrenches during walking. Emphasis was given to reduce computational latency while maintaining accuracy as compared to the offline counterpart. Notably, we highlight the influence of adequate filtering and differentiation under noisy conditions and its importance for consequent dynamic calculations. Real-time estimates of the joint moments, muscle forces, and reaction loads closely resemble OpenSim's offline analyses. Model-based estimation of ground reaction wrenches demonstrates that even a small error can negatively affect other estimated quantities. An application of the developed system is demonstrated in the context of rehabilitation and gait retraining. We expect that such a system will find numerous applications in laboratory settings and outdoor conditions with the advent of predicting or sensing environment interactions. Therefore, we hope that this open-source framework will be a significant milestone for solving this grand challenge.

摘要

本研究旨在探索使用基于个体的肌肉骨骼模型实时估计多种运动学和动力学参数的可能性。该框架旨在与基于标记和惯性测量单元配合使用,从而能够在远远超出专用运动捕捉实验室的范围内进行扩展。我们介绍了计算运动学、广义力、肌肉力、关节反作用力和预测步行时地面反作用力的技术细节。重点是在保持与离线对应物相比的准确性的同时减少计算延迟。值得注意的是,我们强调了在噪声条件下进行适当滤波和微分的影响及其对后续动力学计算的重要性。关节力矩、肌肉力和反作用力的实时估计与 OpenSim 的离线分析非常相似。基于模型的地面反作用力估计表明,即使是很小的误差也会对其他估计量产生负面影响。所开发系统的一个应用是在康复和步态再训练的背景下演示的。我们预计,随着预测或感知环境相互作用的出现,这种系统将在实验室环境和户外条件下找到许多应用。因此,我们希望这个开源框架将成为解决这一重大挑战的重要里程碑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/338a/7961635/bc0d3fc52989/sensors-21-01804-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索