Suppr超能文献

评价细胞色素 P450 3A4、2D6 和 2C9 抑制的机器学习模型。

Evaluation of machine learning models for cytochrome P450 3A4, 2D6, and 2C9 inhibition.

机构信息

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.

出版信息

J Appl Toxicol. 2024 Jul;44(7):1050-1066. doi: 10.1002/jat.4601. Epub 2024 Mar 27.

Abstract

Cytochrome P450 (CYP) enzymes are involved in the metabolism of approximately 75% of marketed drugs. Inhibition of the major drug-metabolizing P450s could alter drug metabolism and lead to undesirable drug-drug interactions. Therefore, it is of great significance to explore the inhibition of P450s in drug discovery. Currently, machine learning including deep learning algorithms has been widely used for constructing in silico models for the prediction of P450 inhibition. These models exhibited varying predictive performance depending on the use of machine learning algorithms and molecular representations. This leads to the difficulty in the selection of appropriate models for practical use. In this study, we systematically evaluated the conventional machine learning and deep learning models for three major P450 enzymes, CYP3A4, CYP2D6, and CYP2C9 from several perspectives, such as algorithms, molecular representation, and data partitioning strategies. Our results showed that the XGBoost and CatBoost algorithms coupled with the combined fingerprint/physicochemical descriptor features exhibited the best performance with Area Under Curve (AUC)  of 0.92, while the deep learning models were generally inferior to the conventional machine learning models (average AUC reached 0.89) on the same test sets. We also found that data volume and sampling strategy had a minor effect on model performance. We anticipate that these results are helpful for the selection of molecular representations and machine learning/deep learning algorithms in the P450 model construction and the future model development of P450 inhibition.

摘要

细胞色素 P450(CYP)酶参与大约 75%的市售药物的代谢。主要药物代谢 CYP 的抑制可能改变药物代谢,导致不良的药物相互作用。因此,探索药物发现中 CYP 的抑制具有重要意义。目前,机器学习(包括深度学习算法)已广泛用于构建用于预测 CYP 抑制的计算模型。这些模型的预测性能因机器学习算法和分子表示的使用而异。这导致在实际使用中选择合适模型的困难。在这项研究中,我们从算法、分子表示和数据划分策略等几个方面,对三种主要 CYP 酶(CYP3A4、CYP2D6 和 CYP2C9)的常规机器学习和深度学习模型进行了系统评估。我们的结果表明,XGBoost 和 CatBoost 算法与组合指纹/物理化学描述符特征相结合,表现出最佳性能,曲线下面积(AUC)为 0.92,而深度学习模型在相同的测试集中普遍不如常规机器学习模型(平均 AUC 达到 0.89)。我们还发现数据量和采样策略对模型性能的影响较小。我们预计这些结果有助于在 CYP 模型构建和未来 CYP 抑制模型开发中选择分子表示和机器学习/深度学习算法。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验