Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.).
Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
Drug Metab Dispos. 2021 Sep;49(9):822-832. doi: 10.1124/dmd.120.000320. Epub 2021 Jun 28.
Cytochrome P450 enzymes are responsible for the metabolism of >75% of marketed drugs, making it essential to identify the contributions of individual cytochromes P450 to the total clearance of a new candidate drug. Overreliance on one cytochrome P450 for clearance levies a high risk of drug-drug interactions; and considering that several human cytochrome P450 enzymes are polymorphic, it can also lead to highly variable pharmacokinetics in the clinic. Thus, it would be advantageous to understand the likelihood of new chemical entities to interact with the major cytochrome P450 enzymes at an early stage in the drug discovery process. Typical screening assays using human liver microsomes do not provide sufficient information to distinguish the specific cytochromes P450 responsible for clearance. In this regard, we experimentally assessed the metabolic stability of ∼5000 compounds for the three most prominent xenobiotic metabolizing human cytochromes P450, i.e., CYP2C9, CYP2D6, and CYP3A4, and used the data sets to develop quantitative structure-activity relationship models for the prediction of high-clearance substrates for these enzymes. Screening library included the NCATS Pharmaceutical Collection, comprising clinically approved low-molecular-weight compounds, and an annotated library consisting of drug-like compounds. To identify inhibitors, the library was screened against a luminescence-based cytochrome P450 inhibition assay; and through crossreferencing hits from the two assays, we were able to distinguish substrates and inhibitors of these enzymes. The best substrate and inhibitor models (balanced accuracies ∼0.7), as well as the data used to develop these models, have been made publicly available (https://opendata.ncats.nih.gov/adme) to advance drug discovery across all research groups. SIGNIFICANCE STATEMENT: In drug discovery and development, drug candidates with indiscriminate cytochrome P450 metabolic profiles are considered advantageous, since they provide less risk of potential issues with cytochrome P450 polymorphisms and drug-drug interactions. This study developed robust substrate and inhibitor quantitative structure-activity relationship models for the three major xenobiotic metabolizing cytochromes P450, i.e., CYP2C9, CYP2D6, and CYP3A4. The use of these models early in drug discovery will enable project teams to strategize or pivot when necessary, thereby accelerating drug discovery research.
细胞色素 P450 酶负责代谢 >75%的市售药物,因此识别个体细胞色素 P450 对新候选药物总清除率的贡献至关重要。过度依赖一种细胞色素 P450 进行清除会带来很高的药物相互作用风险;而且,由于几种人类细胞色素 P450 酶是多态性的,这也会导致临床中药物代谢动力学的高度变化。因此,在药物发现过程的早期阶段,了解新化学实体与主要细胞色素 P450 酶相互作用的可能性将是有利的。使用人肝微粒体的典型筛选测定法并不能提供足够的信息来区分负责清除的特定细胞色素 P450。在这方面,我们实验评估了约 5000 种化合物对三种最主要的异生物质代谢人类细胞色素 P450(CYP2C9、CYP2D6 和 CYP3A4)的代谢稳定性,并使用数据集为这些酶的高清除率底物的定量构效关系模型进行了开发。筛选库包括 NCATS 制药收藏,包含临床批准的低分子量化合物,以及一个注释库,包含类药物化合物。为了识别抑制剂,该库针对基于发光的细胞色素 P450 抑制测定法进行了筛选;并且通过交叉参考两个测定法中的命中结果,我们能够区分这些酶的底物和抑制剂。最佳的底物和抑制剂模型(平衡准确度约为 0.7)以及用于开发这些模型的数据已公开提供(https://opendata.ncats.nih.gov/adme),以促进所有研究小组的药物发现。意义声明:在药物发现和开发中,具有不分选细胞色素 P450 代谢特征的候选药物被认为是有利的,因为它们提供了较少的与细胞色素 P450 多态性和药物相互作用相关的潜在问题的风险。本研究为三种主要的异生物质代谢细胞色素 P450(CYP2C9、CYP2D6 和 CYP3A4)开发了稳健的底物和抑制剂定量构效关系模型。在药物发现的早期使用这些模型将使项目团队能够在必要时制定策略或调整方向,从而加速药物发现研究。