Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158, United States.
Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158, United States.
J Med Chem. 2024 Apr 11;67(7):5854-5865. doi: 10.1021/acs.jmedchem.4c00139. Epub 2024 Mar 27.
The blood-brain barrier (BBB) poses a significant obstacle in developing therapeutics for neurodegenerative diseases and central nervous system (CNS) disorders. P-glycoprotein (P-gp), a multidrug resistance protein, is a critical gatekeeper in the BBB and plays a role in cancer chemoresistance. This paper uses cryo-EM P-gp structures as starting points with an induced fit docking (IFD) model to evaluate 19 pairs of compounds with known P-gp efflux data. The study reveals significant differences in binding energy and sheds light on structural modifications' impact on efflux properties. In the cases examined, fluorine incorporation influences the efflux by altering the molecular conformation rather than proximal heteroatom basicity. Although there are limitations in addressing covalent interactions or when binding extends into the more flexible vestibule region of the protein, the results provide valuable insights and potential strategies to overcome P-gp efflux, contributing to the advancement of drug development for both CNS disorders and cancer therapies.
血脑屏障(BBB)对开发神经退行性疾病和中枢神经系统(CNS)疾病的治疗方法构成了重大障碍。P 糖蛋白(P-gp)是一种多药耐药蛋白,是 BBB 的关键守门员,在癌症化疗耐药中发挥作用。本文使用冷冻电镜 P-gp 结构作为起点,采用诱导契合对接(IFD)模型,对 19 对具有已知 P-gp 外排数据的化合物进行评估。该研究揭示了结合能的显著差异,并阐明了结构修饰对外排特性的影响。在所检查的情况下,氟原子的掺入通过改变分子构象而不是近端杂原子碱性来影响外排。尽管在解决共价相互作用或当结合延伸到蛋白质更灵活的前庭区域时存在限制,但结果提供了有价值的见解和潜在的策略来克服 P-gp 外排,为 CNS 疾病和癌症治疗的药物开发做出贡献。