Peng Jiaying, Lu Dawei, Wu Shiqi, Yang Na, Cui Yujie, Ma Zhaokun, Liu Mengyue, Shi Yongzheng, Sun Yilin, Niu Jin, Wang Feng
State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
J Am Chem Soc. 2024 May 1;146(17):11897-11905. doi: 10.1021/jacs.4c00882. Epub 2024 Mar 27.
Although composite solid-state electrolytes (CSEs) are considered promising ionic conductors for high-energy lithium metal batteries, their unsatisfactory ionic conductivity, low mechanical strength, poor thermal stability, and narrow voltage window limit their practical applications. We have prepared a new lithium superionic conductor (Li-HA-F) with an ultralong nanofiber structure and ultrahigh room-temperature ionic conductivity (12.6 mS cm). When it is directly coupled with a typical poly(ethylene oxide)-based solid electrolyte, the Li-HA-F nanofibers endow the resulting CSE with high ionic conductivity (4.0 × 10 S cm at 30 °C), large Li transference number (0.66), and wide voltage window (5.2 V). Detailed experiments and theoretical calculations reveal that Li-HA-F supplies continuous dual-conductive pathways and results in stable LiF-rich interfaces, leading to its excellent performance. Moreover, the Li-HA-F nanofiber-reinforced CSE exhibits good heat/flame resistance and flexibility, with a high breaking strength (9.66 MPa). As a result, the Li/Li half cells fabricated with the Li-HA-F CSE exhibit good stability over 2000 h with a high critical current density of 1.4 mA cm. Furthermore, the LiFePO/Li-HA-F CSE/Li and LiNiCoMnO/Li-HA-F CSE/Li solid-state batteries deliver high reversible capacities over a wide temperature range with a good cycling performance.
尽管复合固态电解质(CSEs)被认为是用于高能锂金属电池的有前景的离子导体,但其离子电导率不理想、机械强度低、热稳定性差以及电压窗口窄限制了它们的实际应用。我们制备了一种具有超长纳米纤维结构和超高室温离子电导率(12.6 mS cm)的新型锂超离子导体(Li-HA-F)。当它与典型的聚环氧乙烷基固体电解质直接耦合时,Li-HA-F纳米纤维赋予所得的CSE高离子电导率(30℃时为4.0×10 S cm)、大的锂迁移数(0.66)和宽电压窗口(5.2 V)。详细的实验和理论计算表明,Li-HA-F提供连续的双导电通路并导致富含LiF的稳定界面,从而使其具有优异的性能。此外,Li-HA-F纳米纤维增强的CSE表现出良好的耐热/阻燃性和柔韧性,具有高断裂强度(9.66 MPa)。因此,用Li-HA-F CSE制备的Li/Li半电池在2000 h以上表现出良好的稳定性,临界电流密度高达1.4 mA cm。此外,LiFePO/Li-HA-F CSE/Li和LiNiCoMnO/Li-HA-F CSE/Li固态电池在宽温度范围内具有高可逆容量和良好的循环性能。