Huang Zi Xin, Zhang Ting, Zhang Ze Ping, Rong Min Zhi, Zhang Ming Qiu
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China.
ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42736-42747. doi: 10.1021/acsami.4c09099. Epub 2024 Jul 31.
Ceramic-polymer composite solid electrolytes (CSEs) have attracted great attention by combining the advantages of polymer electrolytes and inorganic ceramic electrolytes. Herein, LiGePS (LGPS) particles are incorporated into poly(ethylene oxide) (PEO)-based reversibly interlocked polymer networks (RILNs) derived from the topological rearrangement of two PEO networks cross-linked by reversible imine bonds and disulfide linkages. A series of highly ionic conductive, self-healing CSEs are obtained accordingly. The interlocking architecture successfully inhibits PEO crystallization, increasing the amorphous phase for Li ion transportation, and stabilizes the conductive pathways of LGPS particles by its unique confinement effect. Meanwhile, the LGPS particles cooperate with the RILN matrix, forming a filler-polymer interfacial phase for additional Li ion transportation and strengthening and toughening the resultant CSEs via the strong intermolecular Li-O interactions. Furthermore, the dynamic characteristics of the included reversible bonds ensure a multiple intrinsic self-healing capability. Consequently, the CSEs containing 15 wt % LGPS deliver a high ionic conductivity (1.06 × 10 S cm) and high Li ion transference number (∼0.6) at 25 °C, a wide electrochemical stability window (>4.9 V), good mechanical properties (0.63 MPa, 377%), and a stable CSE/Li anode interface. The integrated Li/CSE/LiFePO battery exhibits a specific discharge capacity of 110.8 mAh g at 1 C (25 °C) and a capacity retention of 76.9% after 200 cycles. Thanks to the healability, the damaged CSEs can regain the structural integrity, ion conductive capability, and cycling performance of the assembled cells. The present work provides an effective strategy to fabricate CSEs for lithium metal batteries that are workable at ambient temperature.
陶瓷-聚合物复合固体电解质(CSEs)通过结合聚合物电解质和无机陶瓷电解质的优点而备受关注。在此,LiGePS(LGPS)颗粒被引入到基于聚环氧乙烷(PEO)的可逆互锁聚合物网络(RILNs)中,该网络由通过可逆亚胺键和二硫键交联的两个PEO网络的拓扑重排衍生而来。相应地获得了一系列高离子导电性、自修复的CSEs。互锁结构成功地抑制了PEO结晶,增加了锂离子传输的非晶相,并通过其独特的限制效应稳定了LGPS颗粒的导电路径。同时,LGPS颗粒与RILN基质协同作用,形成用于额外锂离子传输的填料-聚合物界面相,并通过强分子间Li-O相互作用增强和增韧所得的CSEs。此外,所含可逆键的动态特性确保了多种内在自修复能力。因此,含有15 wt% LGPS的CSEs在25°C下具有高离子电导率(1.06×10 S cm)和高锂离子迁移数(~0.6)、宽电化学稳定性窗口(>4.9 V)、良好的机械性能(0.63 MPa,377%)以及稳定的CSE/锂阳极界面。集成的锂/CSE/磷酸铁锂电池在1 C(25°C)下的比放电容量为110.8 mAh g,200次循环后容量保持率为76.9%。由于可修复性,受损的CSEs可以恢复组装电池的结构完整性、离子传导能力和循环性能。本工作提供了一种有效的策略来制备适用于室温下工作的锂金属电池的CSEs。