Lu Xiaoli, Huang Jing
Westlake AI Therapeutics Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
Westlake AI Therapeutics Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
Biophys J. 2024 May 21;123(10):1195-1210. doi: 10.1016/j.bpj.2024.03.033. Epub 2024 Mar 27.
Human Na taurocholate co-transporting protein (hNTCP) is a key bile salt transporter to maintain enterohepatic circulation and is responsible for the recognition of hepatitis B and D viruses. Despite landmark cryoelectron microscopy studies revealing open-pore and inward-facing states of hNTCP stabilized by antibodies, the transport mechanism remains largely unknown. To address this knowledge gap, we used molecular dynamics and enhanced sampling metadynamics simulations to elucidate the intrinsic mechanism of hNTCP-mediated taurocholate acid (TCA) transport driven by Na binding. We uncovered three TCA-binding modes, including one that closely matched the limited cryoelectron microscopy density observed in the open-pore hNTCP. We also captured several key hNTCP conformations in the substrate transport cycle, particularly including an outward-facing, substrate-bound state. Furthermore, we provided thermodynamic evidence supporting that changes in the Na-binding state drive the TCA transport by exploiting the amphiphilic nature of the substrate and modulating the protein environment, thereby enabling the TCA molecule to flip through. Understanding these mechanistic details of Na-driven bile acid transport may aid in the development of hNTCP-targeted therapies for liver diseases.
人牛磺胆酸钠共转运蛋白(hNTCP)是维持肠肝循环的关键胆盐转运蛋白,负责识别乙型和丁型肝炎病毒。尽管具有里程碑意义的冷冻电子显微镜研究揭示了通过抗体稳定的hNTCP的开孔和向内状态,但其转运机制仍 largely未知。为了填补这一知识空白,我们使用分子动力学和增强采样元动力学模拟来阐明由Na结合驱动的hNTCP介导的牛磺胆酸(TCA)转运的内在机制。我们发现了三种TCA结合模式,其中一种与在开孔hNTCP中观察到的有限冷冻电子显微镜密度密切匹配。我们还捕捉到了底物转运循环中的几个关键hNTCP构象,特别是包括向外的、底物结合状态。此外,我们提供了热力学证据,支持Na结合状态的变化通过利用底物的两亲性和调节蛋白质环境来驱动TCA转运,从而使TCA分子能够翻转通过。了解这些Na驱动的胆汁酸转运的机制细节可能有助于开发针对肝脏疾病的hNTCP靶向疗法。