Suppr超能文献

测试印度洋西部预测物种丰富度、过去的优先排序和海洋保护区指定之间的一致性。

Testing for concordance between predicted species richness, past prioritization, and marine protected area designations in the western Indian Ocean.

机构信息

Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA.

Pristine Seas, National Geographic Society, Washington, DC, USA.

出版信息

Conserv Biol. 2024 Aug;38(4):e14256. doi: 10.1111/cobi.14256. Epub 2024 Mar 28.

Abstract

Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25-km reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment-species proxy and modeling approach can be considered among other important criteria for making conservation decisions.

摘要

科学在环境数据覆盖和机器学习算法方面的进展提高了在数据缺失的情况下进行大规模预测的能力。这些进展使我们能够开发一种空间分辨代理来预测热带近岸海洋分类群的数量。使用多样化的海洋环境空间数据库来模拟来自约 1000 个实地站点的分类群数量,然后将预测应用于西印度洋 9 个生态区和 11 个国家的所有 7039 个 6.25km 珊瑚礁单元。我们的总分类群数量代理是基于硬珊瑚和 5 个高度多样化的珊瑚礁鱼类科的分类群数量的正相关关系(r=0.24)。环境关系表明,鱼类物种的数量主要受生物量、接近人类、治理、连通性和生产力的影响,而珊瑚分类群主要受理化环境变异性的影响。在省、生态区、国家和空间聚类强度的空间划分上,我们根据我们的总物种代理与以前的 3 个优先设置报告以及保护区数据库来比较保护重点区域。我们的方法确定了 119 个符合 3 个分类群(硬珊瑚、鱼类及其组合)和 4 个空间划分(国家、生态区、省和珊瑚聚类)标准的位置。以前的优先设置出版物确定了 91 个优先位置,其中 6 个被所有报告确定。我们确定了 12 个符合我们的 12 个标准的位置,与之前确定的 3 个位置相对应,与至少 1 个过去报告相对应的 65 个位置,以及 28 个新位置。在该省的 208 个海洋保护区中,只有 34%的保护区与预测分类群数量较高的地点重叠。差异的出现是因为过去的优先事项经常基于无法量化的偏远观念和预先选择的优先分类群。我们的环境-物种代理和建模方法可以被视为其他保护决策的重要标准之一。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验