Suppr超能文献

通过遗传密码扩展拓宽蛋白质模板多样性的酶设计中的仲胺催化。

Secondary Amine Catalysis in Enzyme Design: Broadening Protein Template Diversity through Genetic Code Expansion.

机构信息

School of Chemistry and Cardiff Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom.

BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castelló, Spain.

出版信息

Angew Chem Int Ed Engl. 2024 May 27;63(22):e202403098. doi: 10.1002/anie.202403098. Epub 2024 Apr 19.

Abstract

Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.

摘要

仲胺由于其反应活性,可以将蛋白质模板转化为具有催化活性的实体,从而加速人工酶的开发。然而,现有的方法主要依赖于修饰的配体或 N 端脯氨酸,对模板的选择有很大的限制。在这项研究中,遗传密码扩展被用来打破这一界限,使得仲胺能够被引入到替代的蛋白质和选择的位置。携带不同仲胺的吡咯赖氨酸类似物可以被引入超折叠绿色荧光蛋白(sfGFP)、多药结合 LmrR 和核苷酸结合二氢叶酸还原酶(DHFR)中。值得注意的是,含有 D-脯氨酸部分的类似物既具有蛋白酶稳定性又具有催化活性,使 LmrR 和 DHFR 具有所需的转移氢化活性。虽然 LmrR 变体仅限于仿生 1-苄基-1,4-二氢烟酰胺(BNAH)作为氢供体,但最佳的 DHFR 变体有利地利用 NADPH 的 pro-R 氢进行立体选择性反应(对映体过量高达 92:8),这表明蛋白质模板的切换可以拓宽催化的亲核试剂选择。由于辅酶的兼容性,基于 DHFR 的仲胺催化可以整合到酶的循环回收方案中。这种已建立的方法在酶设计方面具有很大的潜力,可适用于从酶进化研究到新生物催化剂的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d05/11497281/6d24f8083427/ANIE-63-e202403098-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验