Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610064, China.
Small Methods. 2024 Oct;8(10):e2301685. doi: 10.1002/smtd.202301685. Epub 2024 Mar 28.
Immune checkpoint blockade (ICB) therapy has brought significant advancements to the field of oncology. However, the diverse responses among patients highlight the need for more accurate predictive tools. In this study, insights are drawn from tumor-immunology pathways, and a novel network-based ICB immunotherapeutic signature, termed ICBnetIS, is constructed. The signature is derived from advanced biological network-based computational strategies involving co-expression networks and molecular interactions networks. The efficacy of ICBnetIS is established through its association with enhanced patient survival and a robust immune response characterized by diverse immune cell infiltration and active anti-tumor immune pathways. The validation process positions ICBnetIS as an effective tool in predicting responses to ICB therapy, analyzing ICB data from a broad collection of over 700 samples from multiple cancer types of more than 15 datasets. It achieves an aggregated prediction AUC of 0.784, which outperforms the other nine renowned immunotherapeutic signatures, indicating the superior predictive capability of ICBnetIS. To sum up, the findings suggest ICBnetIS as a potent tool in predicting ICB therapy responses, offering significant implications for patient selection and treatment optimization in oncology. The study highlights the role of ICBnetIS in advancing personalized treatment strategies, potentially transforming the clinical landscape of ICB therapy.
免疫检查点阻断(ICB)疗法在肿瘤学领域带来了重大进展。然而,患者之间的多样化反应突出表明需要更准确的预测工具。在这项研究中,我们从肿瘤免疫学途径中汲取了见解,并构建了一种新的基于网络的 ICB 免疫治疗特征签名,称为 ICBnetIS。该特征签名源自先进的基于生物学网络的计算策略,涉及共表达网络和分子相互作用网络。通过与增强的患者生存和多样化的免疫细胞浸润和活跃的抗肿瘤免疫途径相关联,证明了 ICBnetIS 的疗效。验证过程将 ICBnetIS 定位为一种有效的工具,用于预测对 ICB 治疗的反应,分析来自多个癌症类型的超过 700 个样本的超过 15 个数据集的广泛 ICB 数据。它实现了聚合预测 AUC 为 0.784,优于其他九个著名的免疫治疗特征签名,表明 ICBnetIS 具有卓越的预测能力。总之,这些发现表明 ICBnetIS 是预测 ICB 治疗反应的有力工具,为肿瘤学中的患者选择和治疗优化提供了重要意义。该研究强调了 ICBnetIS 在推进个性化治疗策略中的作用,有可能改变 ICB 治疗的临床格局。