Suppr超能文献

治疗中肿瘤标本的免疫原性细胞死亡特征可预测转移性黑色素瘤对免疫检查点疗法的反应。

Immunogenic cell death signatures from on-treatment tumor specimens predict immune checkpoint therapy response in metastatic melanoma.

作者信息

Zeng Huancheng, Jiang Qiongzhi, Zhang Rendong, Zhuang Zhemin, Wu Jundong, Li Yaochen, Fang Yutong

机构信息

Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, China.

Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.

出版信息

Sci Rep. 2024 Oct 2;14(1):22872. doi: 10.1038/s41598-024-74636-6.

Abstract

Melanoma is a highly malignant form of skin cancer that typically originates from abnormal melanocytes. Despite significant advances in treating metastatic melanoma with immune checkpoint blockade (ICB) therapy, a substantial number of patients do not respond to this treatment and face risks of recurrence and metastasis. This study collected data from multiple datasets, including cohorts from Riaz et al., Gide et al., MGH, and Abril-Rodriguez et al., focusing on on-treatment samples during ICB therapy. We used the single-sample gene set enrichment analysis (ssGSEA) method to calculate immunogenic cell death scores (ICDS) and employed an elastic network algorithm to construct a model predicting ICB efficacy. By analyzing 18 ICD gene signatures, we identified 9 key ICD gene signatures that effectively predict ICB treatment response for on-treatment metastatic melanoma specimens. Results showed that patients with high ICD scores had significantly higher response rates to ICB therapy compared to those with low ICD scores. ROC analysis demonstrated that the AUC values for both the training and validation sets were around 0.8, indicating good predictive performance. Additionally, survival analysis revealed that patients with high ICD scores had longer progression-free survival (PFS). This study used an elastic network algorithm to identify 9 ICD gene signatures related to the immune response in metastatic melanoma. These gene features can not only predict the efficacy of ICB therapy but also provide references for clinical decision-making. The results indicate that ICD plays an important role in metastatic melanoma immunotherapy and that expressing ICD signatures can more accurately predict ICB treatment response and prognosis for on-treatment metastatic melanoma specimens, thus providing a basis for personalized treatment.

摘要

黑色素瘤是一种高度恶性的皮肤癌,通常起源于异常黑素细胞。尽管免疫检查点阻断(ICB)疗法在治疗转移性黑色素瘤方面取得了重大进展,但仍有相当数量的患者对这种治疗无反应,并面临复发和转移的风险。本研究从多个数据集中收集数据,包括来自Riaz等人、Gide等人、MGH以及Abril-Rodriguez等人的队列,重点关注ICB治疗期间的治疗样本。我们使用单样本基因集富集分析(ssGSEA)方法计算免疫原性细胞死亡评分(ICDS),并采用弹性网络算法构建预测ICB疗效的模型。通过分析18个ICD基因特征,我们确定了9个关键的ICD基因特征,这些特征能够有效预测治疗期间转移性黑色素瘤标本的ICB治疗反应。结果显示,与ICD评分低的患者相比,ICD评分高的患者对ICB治疗的反应率显著更高。ROC分析表明,训练集和验证集的AUC值均约为0.8,表明具有良好的预测性能。此外,生存分析显示,ICD评分高的患者无进展生存期(PFS)更长。本研究使用弹性网络算法确定了9个与转移性黑色素瘤免疫反应相关的ICD基因特征。这些基因特征不仅可以预测ICB治疗的疗效,还可为临床决策提供参考。结果表明,ICD在转移性黑色素瘤免疫治疗中起重要作用,表达ICD特征可以更准确地预测治疗期间转移性黑色素瘤标本的ICB治疗反应和预后,从而为个性化治疗提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ef9/11447205/81011f30dcc8/41598_2024_74636_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验