Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.
Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315, Oslo, Norway.
Phys Chem Chem Phys. 2024 Jun 6;26(22):15856-15867. doi: 10.1039/d4cp00221k.
Chlorosomes, the photosynthetic antenna complexes of green sulfur bacteria, are paradigms for light-harvesting elements in artificial designs, owing to their efficient energy transfer without protein participation. We combined magic angle spinning (MAS) NMR, optical spectroscopy and cryogenic electron microscopy (cryo-EM) to characterize the structure of chlorosomes from a mutant of . The chlorosomes of this mutant have a more uniform composition of bacteriochlorophyll (BChl) with a predominant homolog, [8Ethyl, 12Ethyl] BChl , compared to the wild type (WT). Nearly complete C chemical shift assignments were obtained from well-resolved homonuclear C-C RFDR data. For proton assignments heteronuclear C-H (hCH) data sets were collected at 1.2 GHz spinning at 60 kHz. The CHHC experiments revealed intermolecular correlations between 13/3, 13/3, and 12/3, with distance constraints of less than 5 Å. These constraints indicate the - parallel stacking motif for the aggregates. Fourier transform cryo-EM data reveal an axial repeat of 1.49 nm for the helical tubular aggregates, perpendicular to the inter-tube separation of 2.1 nm. This axial repeat is different from WT and is in line with BChl - stacks running essentially parallel to the tube axis. Such a packing mode is in agreement with the signature of the Q band in circular dichroism (CD). Combining the experimental data with computational insight suggests that the packing for the light-harvesting function is similar between WT and , while the chirality within the chlorosomes is modestly but detectably affected by the reduced compositional heterogeneity in .
Chlorosomes,即绿色硫细菌的光合天线复合物,由于其在没有蛋白质参与的情况下高效能量转移,成为人工设计中光捕获元件的典范。我们结合魔角旋转(MAS)NMR、光谱学和低温电子显微镜(cryo-EM)来表征来自 的突变体的 Chlorosomes 的结构。与野生型(WT)相比,该突变体的 Chlorosomes 具有更均匀的细菌叶绿素(BChl)组成,主要同系物为 [8Ethyl, 12Ethyl] BChl。从分辨率较高的同核 C-C RFDR 数据中获得了几乎完整的 C 化学位移分配。对于质子分配,在 60 kHz 的 1.2 GHz 旋转下收集异核 C-H(hCH)数据集。CHHC 实验揭示了 13/3、13/3 和 12/3 之间的分子间相关性,距离约束小于 5 Å。这些约束表明聚合体具有 - 平行堆积的特征。傅立叶变换低温 cryo-EM 数据显示螺旋管状聚合体的轴向重复为 1.49nm,垂直于 2.1nm 的管间分离。这个轴向重复与 WT 不同,与 BChl - 堆积基本上平行于管轴一致。这种堆积模式与圆二色性(CD)中 Q 带的特征一致。将实验数据与计算洞察力相结合表明,WT 和 之间的光捕获功能的堆积方式相似,而 Chlorosomes 内部的手性则受到组成异质性降低的适度但可检测的影响。