等离子体增强自组装人工光捕获纳米天线的光物理性质

Photophysics of plasmonically enhanced self-assembled artificial light-harvesting nanoantennas.

作者信息

Donahue Elizabeth, Malina Tomáš, Smith Emma, Pšenčík Jakub, Sprague-Klein Emily A

机构信息

Department of Chemistry, Brown University, Providence, RI, USA.

Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.

出版信息

Commun Chem. 2025 Aug 28;8(1):263. doi: 10.1038/s42004-025-01664-2.

Abstract

The design of efficient artificial light-harvesting antennas is essential for enabling the widespread use of solar energy. Natural photosynthetic systems offer valuable inspiration, but many rely on complex pigment-protein interactions and have limited spectral coverage, which pose challenges for rational design. Chlorosome mimics, which are self-assembling pigment aggregates inspired by green photosynthetic bacteria, offer structural simplicity, flexible tunability, and strong excitonic coupling through pigment-pigment interactions. However, these pigment aggregates suffer from limited absorption in the green and near-infrared regions and, similarly to other light-harvesting systems, reduced energy transfer efficiency at high donor concentrations. One promising strategy to overcome these limitations is the integration of plasmonic nanoparticles, which enhance local electromagnetic fields, increase spectral coverage, and make new energetic pathways accessible. Although plasmonic enhancement has been widely studied in pigment-protein complexes like Photosystem I and light-harvesting complexes (LHCs), its application to pigment-pigment self-assembled systems remains largely unexplored. This perspective presents recent advances in biomimetic light-harvesting design with chlorosome mimics and explores the potential for plasmonic enhancement of photophysics in these systems. We examine the structure of chlorosomes and their artificial mimics to understand the role of pigment-pigment interactions in facilitating highly efficient energy transfer.

摘要

设计高效的人工光捕获天线对于实现太阳能的广泛应用至关重要。天然光合作用系统提供了宝贵的灵感,但许多系统依赖于复杂的色素 - 蛋白质相互作用,且光谱覆盖范围有限,这给合理设计带来了挑战。叶绿体模拟物是受绿色光合细菌启发的自组装色素聚集体,具有结构简单、可调性灵活以及通过色素 - 色素相互作用实现强激子耦合的特点。然而,这些色素聚集体在绿色和近红外区域的吸收有限,并且与其他光捕获系统类似,在供体浓度较高时能量转移效率会降低。一种克服这些限制的有前景的策略是整合等离子体纳米颗粒,它可以增强局部电磁场、扩大光谱覆盖范围并开辟新的能量路径。尽管等离子体增强在诸如光系统I和光捕获复合物(LHCs)等色素 - 蛋白质复合物中已得到广泛研究,但其在色素 - 色素自组装系统中的应用仍 largely未被探索。本文综述了叶绿体模拟物在仿生光捕获设计方面的最新进展,并探讨了这些系统中光物理等离子体增强的潜力。我们研究了叶绿体及其人工模拟物的结构,以了解色素 - 色素相互作用在促进高效能量转移中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320f/12394525/9b827a5de342/42004_2025_1664_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索