Suppr超能文献

基于分子电子密度 MBIS 分区的非键力场参数改进 T4 溶菌酶双突变体结合亲和力预测。

Nonbonded Force Field Parameters from MBIS Partitioning of the Molecular Electron Density Improve Binding Affinity Predictions of the T4-Lysozyme Double Mutant.

机构信息

Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4070386 Concepción, Chile.

出版信息

J Chem Inf Model. 2024 Apr 22;64(8):3269-3277. doi: 10.1021/acs.jcim.3c01912. Epub 2024 Mar 28.

Abstract

The use of computer simulation for binding affinity prediction is growing in drug discovery. However, its wider use is constrained by the accuracy of the free energy calculations. The key sources of error are the force fields used to depict molecular interactions and insufficient sampling of the configurational space. To improve the quality of the force field, we developed a Python-based computational workflow. The workflow described here uses the minimal basis iterative stockholder (MBIS) method to determine atomic charges and Lennard-Jones parameters from the polarized molecular density. This is done by performing electronic structure calculations on various configurations of the ligand when it is both bound and unbound. In addition, we validated a simulation procedure that accounts for the protein and ligand degrees of freedom to precisely calculate binding free energies. This was achieved by comparing the self-adjusted mixture sampling and nonequilibrium thermodynamic integration methods using various protein and ligand conformations. The accuracy of predicting binding affinity is improved by using MBIS-derived force field parameters and a validated simulation procedure. This improvement surpasses the chemical precision for the eight aromatic ligands, reaching a root-mean-square error of 0.7 kcal/mol.

摘要

计算机模拟在药物发现中用于结合亲和力预测的应用正在不断增加。然而,其更广泛的应用受到自由能计算准确性的限制。误差的主要来源是用于描述分子相互作用的力场和构象空间的采样不足。为了提高力场的质量,我们开发了一个基于 Python 的计算工作流程。这里描述的工作流程使用最小基迭代股东(MBIS)方法从极化分子密度中确定原子电荷和 Lennard-Jones 参数。这是通过在配体结合和未结合时对其各种构象执行电子结构计算来完成的。此外,我们验证了一种模拟程序,该程序考虑了蛋白质和配体的自由度,以精确计算结合自由能。这是通过使用各种蛋白质和配体构象比较自调整混合采样和非平衡热力学积分方法来实现的。使用 MBIS 导出的力场参数和经过验证的模拟程序可以提高结合亲和力预测的准确性。这种改进超过了八个芳香族配体的化学精度,达到了 0.7 kcal/mol 的均方根误差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验