Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4070386 Concepción, Chile.
J Chem Inf Model. 2024 Apr 22;64(8):3269-3277. doi: 10.1021/acs.jcim.3c01912. Epub 2024 Mar 28.
The use of computer simulation for binding affinity prediction is growing in drug discovery. However, its wider use is constrained by the accuracy of the free energy calculations. The key sources of error are the force fields used to depict molecular interactions and insufficient sampling of the configurational space. To improve the quality of the force field, we developed a Python-based computational workflow. The workflow described here uses the minimal basis iterative stockholder (MBIS) method to determine atomic charges and Lennard-Jones parameters from the polarized molecular density. This is done by performing electronic structure calculations on various configurations of the ligand when it is both bound and unbound. In addition, we validated a simulation procedure that accounts for the protein and ligand degrees of freedom to precisely calculate binding free energies. This was achieved by comparing the self-adjusted mixture sampling and nonequilibrium thermodynamic integration methods using various protein and ligand conformations. The accuracy of predicting binding affinity is improved by using MBIS-derived force field parameters and a validated simulation procedure. This improvement surpasses the chemical precision for the eight aromatic ligands, reaching a root-mean-square error of 0.7 kcal/mol.
计算机模拟在药物发现中用于结合亲和力预测的应用正在不断增加。然而,其更广泛的应用受到自由能计算准确性的限制。误差的主要来源是用于描述分子相互作用的力场和构象空间的采样不足。为了提高力场的质量,我们开发了一个基于 Python 的计算工作流程。这里描述的工作流程使用最小基迭代股东(MBIS)方法从极化分子密度中确定原子电荷和 Lennard-Jones 参数。这是通过在配体结合和未结合时对其各种构象执行电子结构计算来完成的。此外,我们验证了一种模拟程序,该程序考虑了蛋白质和配体的自由度,以精确计算结合自由能。这是通过使用各种蛋白质和配体构象比较自调整混合采样和非平衡热力学积分方法来实现的。使用 MBIS 导出的力场参数和经过验证的模拟程序可以提高结合亲和力预测的准确性。这种改进超过了八个芳香族配体的化学精度,达到了 0.7 kcal/mol 的均方根误差。