Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4070386 Concepción, Chile.
Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnnarde 46, B-9052 Ghent, Belgium.
J Chem Inf Model. 2022 Sep 12;62(17):4162-4174. doi: 10.1021/acs.jcim.2c00316. Epub 2022 Aug 12.
Binding affinity prediction by means of computer simulation has been increasingly incorporated in drug discovery projects. Its wide application, however, is limited by the prediction accuracy of the free energy calculations. The main error sources are force fields used to describe molecular interactions and incomplete sampling of the configurational space. Organic host-guest systems have been used to address force field quality because they share similar interactions found in ligands and receptors, and their rigidity facilitates configurational sampling. Here, we test the binding free energy prediction accuracy for 14 guests with an aromatic or adamantane core and the CB7 host using molecular electron density derived nonbonded force field parameters. We developed a computational workflow written in Python to derive atomic charges and Lennard-Jones parameters with the Minimal Basis Iterative Stockholder method using the polarized electron density of several configurations of each guest in the bound and unbound states. The resulting nonbonded force field parameters improve binding affinity prediction, especially for guests with an adamantane core in which repulsive exchange and dispersion interactions to the host dominate.
通过计算机模拟进行结合亲和力预测已越来越多地纳入药物发现项目中。然而,其广泛应用受到自由能计算预测准确性的限制。主要误差源是用于描述分子相互作用的力场和构象空间的不完全采样。有机主体-客体系统已被用于解决力场质量问题,因为它们具有与配体和受体中发现的相似相互作用,并且它们的刚性有利于构象采样。在这里,我们使用源自分子电子密度的非键相互作用力场参数,对具有芳族或金刚烷核和 CB7 主体的 14 个客体的结合自由能预测准确性进行测试。我们开发了一个用 Python 编写的计算工作流程,使用极化电子密度的各个构象,使用最小基迭代股东方法为每个客体在结合和未结合状态下的几个构象推导原子电荷和 Lennard-Jones 参数。所得非键相互作用力场参数提高了结合亲和力预测的准确性,特别是对于具有金刚烷核的客体,其中对主体的排斥交换和色散相互作用占主导地位。